

Disclaimer

This document is issued within the frame and for the purpose of the NEPHELE project. This project has received funding from the European
Union’s Horizon Europe Framework Programme under Grant Agreement No.101070487. The opinions expressed and arguments employed

herein do not necessarily reflect the official views of the European Commission.

The dissemination of this document reflects only the authors’ view, and the European Commission is not responsible for any use that may be
made of the information it contains. This deliverable is subject to final acceptance by the European Commission.

This document and its content are the property of the NEPHELE Consortium. The content of all or parts of this document can be used and

distributed provided that the NEPHELE project and the document are properly referenced.
Each NEPHELE Partner may use this document in conformity with the NEPHELE Consortium Grant Agreement provisions.

(*) Dissemination level: PU: Public, fully open, e.g., web; CO: Confidential, restricted under conditions set out in Model Grant Agreement;
CI: Classified EU RESTRICTED, EU CONFIDENTIAL, Int = Internal Working Document, information as referred to in Commission

Decision 2001/844/EC.

A Lightweight Software Stack and Synergetic Meta-Orchestration Framework

for the Next Generation Compute Continuum

D3.1 Initial Release of VOStack Layers and

Intelligence Mechanisms on IoT Devices

Document Identification

Status Final Due Date 30/11/2023

Version 1.0 Submission Date 22/12/2023

Related WP WP3 Document Reference D3.1

Related Delivera-

ble(s)

D2.1, D2.2, D3.2, D6.1 Dissemination Level (*) PU

Lead Participant SIEMENS Lead Author Darko Anicic

Contributors NTUA, CNIT, SIEMENS,

ATOS, INRIA, UOM,

ODINS, SMILE, ININ,

WINGS, IBM, ERCIM,

ZHAW

Reviewers Adriana Arteaga (INRIA),

Anastasios Zafeiropoulos

(NTUA)

Keywords:

Virtual Object, VOStack, Computing Continuum, IoT Interoperability, IoT Virtualization, CEP, TinyML, Se-

mantic Model, W3C WoT, OMA LwM2M, NGSI-LD

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 2 of 110

Document Information

List of Contributors

Name Partner

Symeon Papavassiliou, Anastasios

Zafeiropoulos, Eleni Fotopoulou, Nikolaos

Filinis, Dimitrios Spatharakis, Ioannis Tzanettis,

Ioannis Dimolitsas, Constantinos Vassilakis

NTUA

Giacomo Genovese, Antonella Molinaro,

Antonio Iera, Alessandro Carrega, Luigi

Rachiele

CNIT

Darko Anicic, Mahda Noura, Haoyu Ren

Kirill Dorofeev, Nilay Tuefek Oezkaya, Martin

Oestreicher, Ege Korkan

SIEMENS

Guillermo Gomez ATOS

Nathalie Mitton, Adriana Arteaga Arce, Carol

Habib, Hazem Chaabi

INRIA

Lefteris Mamatas, Georgios Papathanail,

Angelos Pentelas, Maria Drintsoudi, Panagiotis

Papadimitriou, Ilias Sakellariou

UOM

Rafael Marin Perez, Alejandro Arias Jiménez ODINS

Rudolf Sušnik, Janez Sterle ININ

Marco Jahn ECL

Konstantinos Almpanakis, Konstantinos Lessis WINGS

Sofiane Zemouri IBM

François Daoust ERCIM

Giovanni Toffetti, Leonardo Militano ZHAW

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 3 of 110

Document History

Version Date Change editors Changes

0.1 15/02/2023 Darko Anicic, Mahda

Noura, Haoyu Ren,

Kirill Dorofeev

ToC preparation and first draft,

Editing of Sections 1

Editing of Sections 4, 9, and 11

0.2 30/03/2023 Giacomo Genovese Editing of Sections 2, 3 and 7

0.3 30/04/2023 Anastasios

Zafeiropoulos,

Dimitrios Spatharakis

Editing of Sections 8 and 10

Extending Section 3 and 4

0.4 30/05/2023 Giacomo Genovese Extending Section 4

0.5 30/06/2023 Panagiotis

Papadimitriou

Editing of Sections 5

0.6 30/07/2023 Rafael Marin Perez,

Adriana Arteaga Arce

Extending Section 5, editing of Sections 6

0.7 15/11/2023 Darko Anicic Full version of the deliverable available for

internal review

0.8 25/11/2023 Adriana Arteaga Comments by the internal review

0.9 15/12/2023 Mahda Noura, Haoyu

Ren, Darko Anicic,

Kirill Dorofeev,

Giacomo Genovese,

Anastasios

Zafeiropoulos,

Panagiotis

Papadimitriou, Rafael

Marin Perez

Updated version with revisions

1.0 21/12/2023 Darko Anicic Final version to be submitted

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Darko Anicic (SIEMENS) 15/11/2023

Internal reviewers Adriana Arteaga (INRIA), Anastasios

Zafeiropoulos (NTUA)

15/12/2023

Project Coordinator Symeon Papavassiliou (NTUA) 21/12/2023

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 4 of 110

Table of Contents
DOCUMENT INFORMATION .. 2
TABLE OF CONTENTS .. 4
LIST OF FIGURES .. 6
LIST OF TABLES .. 8
LIST OF ACRONYMS .. 9
EXECUTIVE SUMMARY ... 11
1 INTRODUCTION .. 12
2 VIRTUAL OBJECT AND VIRTUAL OBJECT STACK .. 13

2.1 VO Concept ... 13
2.2 VOStack .. 14

2.2.1 Edge/Cloud Convergence Layer .. 20
2.2.2 Backend Logics Layer ... 21
2.2.3 Physical Convergence Layer ... 21

3 STATE OF THE ART ... 22
3.1 IoT Application Protocols ... 22

3.1.1 CoAP ... 22
3.1.2 MQTT .. 23
3.1.3 HTTP ... 24

3.2 Device Virtualization Techniques ... 24
3.3 Device Interoperability and Management ... 25

3.3.1 NGSI-LD ... 25
3.3.2 W3C Web of Things .. 30
3.3.3 OMA-LwM2M .. 33

3.4 Networking .. 38
3.4.1 Networking Requirements at IoT Level .. 38
3.4.2 Ad-hoc Cloud Networking .. 39

3.5 Device Intelligence .. 41
4 INTELLIGENT IOT DEVICES MODELLING, MANAGEMENT, AND INTEROPERABILITY . 43

4.1 VO Descriptor ... 44
4.2 Interoperability and Relevant Solutions with W3C WoT ... 46

4.2.1 Semantic Model for VO Functions .. 48
4.2.2 Semantic Model for Device Intelligence ... 50
4.2.3 Overview of VO Descriptor Based on W3C WoT .. 53

4.3 Interoperability and Relevant Solutions with OMA-LwM2M .. 56
4.4 Semantic Interoperability between WoT and NGSI-LD ... 57

4.4.1 Interoperability between VO Descriptor and models based on W3C TD and LwM2M 60
5 AUTONOMIC FUNCTIONALITIES AND AD-HOC CLOUDS MANAGEMENT 61

5.1 Autonomic Networking Functionalities at IoT Level.. 61
5.2 Networking Functionalities in the VOStack .. 62
5.3 SDN-based Reactive Routing .. 64

5.3.1 SDN Control Plane .. 65
5.4 Time-Sensitive Networking .. 66

5.4.1 TSN Control Plane .. 66
5.4.2 TSN Schedule Engine ... 67

6 SECURITY FUNCTIONALITY .. 74
6.1 Decentralized Identifiers ... 74
6.2 Verifiable Credentials and Verifiable Presentations ... 75
6.3 Security Architecture ... 75

7 IOT DEVICE VIRTUALIZED AND SUPPORTIVE FUNCTIONS .. 77
7.1 Telemetry .. 78
7.2 Data Aggregation .. 79
7.3 Elasticity Management .. 79
7.4 Alarms ... 79

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 5 of 110

7.5 Image Processing ... 79
8 ORCHESTRATION MANAGEMENT INTERFACES ... 81
9 INTELLIGENCE ON IOT DEVICES AND INTERPLAY WITH VIRTUAL OBJECTS 83

9.1 Approach ... 83
9.2 Complex Event Processing .. 83
9.3 TinyOL (TinyML with Online Learning) .. 84
9.4 Interplay with VOs .. 85
9.5 Current Status .. 86

10 VOSTACK IMPLEMENTATION AND OPEN-SOURCE ACTIVITIES ... 87
10.1 VO alignment with W3C ... 87
10.2 VO Stack Implementation Based on W3C .. 89
10.3 VO alignment with OMA-LwM2M .. 91
10.4 VO Stack implementation based on OMA-LwM2M .. 92
10.5 VO-OMA-LwM2M Proof of Concept .. 97

10.5.1 Setup and Equipment ... 98
10.5.2 PoC Architecture ... 98
10.5.3 Application .. 100
10.5.4 Performance Analysis .. 101

11 CONCLUSIONS ... 105
REFERENCES .. 106

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 6 of 110

List of Figures
Figure 2-1: VO as an extension of the IoT physical device .. 14
Figure 2-2: Virtual Object Stack (VOStack) Layers ... 15
Figure 2-3: Virtual Object Interactions ... 20
Figure 3-4: TD Instance for a Sample Lamp ... 31
Figure 3-5: Thing Model for the TD of the Lamp ... 32
Figure 3-6: Thing Model for a dimmable lamp ... 33
Figure 3-7: The overall architecture of the LwM2M Enabler [5] ... 34
Figure 3-8: LwM2M Server Client interactions .. 34
Figure 3-9: LwM2M bootstrap .. 35
Figure 3-10: LwM2M Registration. .. 35
Figure 3-11: LwM2M operations .. 35
Figure 3-12: LwM2M information reporting .. 35
Figure 3-13: LwM2M resource model .. 36
Figure 3-14: LwM2M resource model in XML .. 37
Figure 3-15: LwM2M access control object instance ... 37
Figure 3-16: TSN bridge internals based on IEEE 802.1Qbv ... 40
Figure 4-17: Thing Model Describing a Siemens Thermostat .. 48
Figure 4-18: A Sample µCEP Rule Modelled as a Things Model .. 50
Figure 4-19: TinyML Modelled as a Thing Model ... 53
Figure 4-20: Overview of architecture for extending VO behaviour at runtime. 54
Figure 4-21: Overview of our solution as BPMN diagram ... 55
Figure 4-22: VO Descriptor Based on W3C WoT as Sequence Diagram ... 56
Figure 4-23: Semantic interoperability challenge between WoT and NGSI-LD composite virtual objects.

 ... 58
Figure 4-24: High-level overview of interworking between NGSI-LD and WoT 59
Figure 4-25: Conceptual overview of the semantic mapping between TDs and NGSI-LD models 60
Figure 5-26: Functionalities distribution along the compute continuum .. 61
Figure 5-27: Ad-hoc cloud and networking functionalities at the VO stack ... 63
Figure 5-28: Evaluation topology .. 69
Figure 5-29: Latency of scheduled traffic ... 70
Figure 5-30: Jitter of scheduled traffic. ... 70
Figure 5-31: Packet handling workflow in TAPRIO .. 71
Figure 5-32: Interaction between the TSN data and control plane .. 72
Figure 5-33: Example of TSN-TAPRIO module .. 73
Figure 6-34: Example of a Decentralized Identifier (DID) ... 74
Figure 6-35: Overview of DID architecture. ... 74
Figure 6-36: Verifiable Credential flows .. 75
Figure 6-37: Security components deployed for an interaction cVO-to-VO. 76
Figure 7-38: Descriptors extracted histogram of oriented gradients (Source: [26]) 80
Figure 8-39: High-level view for the VO positioning in the computing continuum 81
Figure 8-40: Application graph example with example constraints .. 82
Figure 9-41: System Design of the μCEP Engine ... 84
Figure 9-42: Building blocks of TinyOL... 85
Figure 9-43: The overview of the current implementation status ... 86
Figure 10-44: VO deployment based on W3C WoT in case of device with computing capabilities. ... 87
Figure 10-45: VO deployment based on W3C WoT in case of device without computing capabilities.

 ... 87
Figure 10-46: The overview of the framework: the modelling, management and interoperability of IoT

Devices and Their Functions ... 89
Figure 10-47: Deploying µCEP and TinyOL on Siemens IoT devices and implementing their digital

twins using WoT Thing Description ... 90

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 7 of 110

Figure 10-48: Virtual Object Manager REST API .. 91
Figure 10-49: VO architecture in OMA-LwM2M standard .. 92
Figure 10-50: An example of MQTT southbound interface for READ operation. 93
Figure 10-51: Class diagram describing ClientController and ClientService relationship. 97
Figure 10-52: PoC architecture ... 99
Figure 10-53: PoC dashboard snapshot of Device 001 ... 100
Figure 10-54: Device D003 dashboard snapshot ... 101
Figure 10-55: InfluxDB and SqlLite comparison on message lost on growing frequency. 102
Figure 10-56: InfluxDB and SqlLite comparison on latency in message delivery on growing frequency

 ... 103
Figure 10-57: InfluxDB and SqlLite comparison on message lost to northbound delivery on growing

frequency. .. 103

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 8 of 110

List of Tables
Table 2.1: VOStack Functional Requirements .. 15
Table 2.2 VOStack non-Functional Requirements .. 18
Table 3.1 Operations and Interfaces relationship. ... 36
Table 4.1: Lists of all configurations of the VO Descriptor .. 44
Table 5.1 SDN Southbound API ... 66

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 9 of 110

List of Acronyms

Abbreviation /Acronym Description

2D Two dimensional

3D Three dimensional

5G Fifth Generation

AI Artificial Intelligence

API Application Programming Interface

ARE Ambulance in a Rural Environment

ASP Application Service Provider

ASV Application Service Vendor

BAS Building Automation System

CCNM Computing Continuum Network Manager

CD Continuous Delivery

CFS Container Freight Stations

CI Continuous Integration

CICD Continuous Integration and Continuous Delivery

CPU Central Processing Unit

cVO Composite Virtual Object

DID Distributed Identifier

DL Deep Learning

DLT Distributed Ledger

DPR Data Processing Requirements

DT Digital Twin

E2E End-to-End

EHR Electronic Health Record

ERP Enterprise Resource Planning

FR Functional Requirement

FRM Federated Resource Manager

GB Gigabyte

GNSS Global Navigation Satellite System

GPU Graphics Processing Unit

GUI Graphical User Interface

GW Gateway

HDA Hyper Distributed Application

HDAR Hyper Distributed Application Repository

HVAC Heating, Ventilation and Air Conditioning

HW Hardware

IaaS Infrastructure as a Service

IoT Internet of Things

KPI Key Performance Indicator

LP Local Processing

MB Megabyte

mHWDev Minimal HW Device

ML Machine Learning

MQTT MQ Telemetry Transport

NB-IoT Narrowband Internet of Things

NFR Non-Functional Requirement

OBU On Board Unit

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 10 of 110

Abbreviation /Acronym Description

OS Operating System

PIS Port Information Systems

PS Primary Screen

QoS Quality of Service

ROS Robot Operating System

SLA Service Level Agreement

SLAM Simultaneous Location and Mapping

SMO Synergetic Meta-Orchestrator

SR System Requirement

SW Software

TD Touchscreen Display

TDD Test Driven Development

TRL Technology Readiness Level

TSN Time Sensitive Networking

UC Use Case

UHD Ultra-High Definition

VO Virtual Object

XACML eXtensible Access Control Markup Language

ZSM Zero Touch Network and Service Management

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 11 of 110

Executive Summary
Deliverable 3.1 is the first iteration of VOStack and intelligence mechanisms on IoT Devices in the

NEPHELE project. VOStack, which stands for Virtual Object Stack, is a software stack that provides

virtualization of physical devices via a concept of Virtual Object. Virtual Object (VO) is the virtual

counterpart of an IoT device. It provides a set of abstractions for representing and managing any type of

IoT device. Intelligence mechanisms on IoT Devices aim to facilitate on-device intelligence. Deploying

TinyML and Complex Event Processing (CEP) techniques, IoT devices can enable on-device, real-time,

context-aware decision-making in response to streaming data generated by these devices. Deliverable

3.1 (D3.1) provides the concept of intelligence on IoT Devices, semantic representation of IoT Devices

via VOs, as well as a set of functionalities such as management, authorization, security, discovery, and

orchestration as provided by VOStack. D3.1 also contributes to autonomous networking functions in the

NEPHELE project, aiming to provide the capacity of a network to self-configure, self-monitor, and self-

optimise without human intervention.

With this, the goal of D3.1 is to contribute to the convergence of different IoT Technologies, thereby

guaranteeing continuous and seamless openness and interoperability in the NEPHELE project. This

deliverable includes the current outcomes of Work Package 3, i.e., tasks T3.1 - T3.5. The document will

be revised and updated in month 24 of the project, in deliverable D3.2, when the final release of VOStack

Layers and intelligence mechanisms on IoT Devices will be provided.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 12 of 110

1 Introduction
NEPHELE is a Research and Innovation Action (RIA) project funded by the Horizon Europe

programme under the topic "Future European platforms for the Edge: Meta Operating Systems".

NEPHELE vision is to enable the efficient, reliable, and secure end-to-end orchestration of hyper-

distributed applications over a programmable infrastructure that is spanning across the compute

continuum from IoT-to-edge-to-cloud.

The next generation Internet of Things (IoT) and Edge Computing technologies are evolving at a rapid

pace and the global number of connected IoT devices continues to increase. This trend occurs in parallel

with the increase in the heterogeneity of the IoT technologies and standards. In order to create the value,

users of these technologies and standards have few challenges to tackle. For example, the heterogeneity

of diverse types of intelligent IoT devices needs to be harnessed, diverse communication protocols need

to be supported, the complexity of various information models for semantic representation of IoT assets

must be resolved, and so forth. To address these challenges, the NEPHELE project introduces the

concept of Virtual Object (VO). A VO is the virtual counterpart (digital twin) of an IoT device. It

provides a mechanism to virtually represent and manage any type of IoT device. Virtual Object Stack

(VOStack) is a software stack, which can be used for creating, discovering, orchestrating, and

consuming VOs. Furthermore, the VOStack provides mechanisms for managing the interaction among

IoT devices and VOs. VOStack resides at the edge and is a crucial component to efficiently exploit

resources in the continuum from Cloud-to-Edge-to-IoT-Device.

This deliverable reports on the activities of Work Package 3 (WP3). WP3 is devoted to the topic of

convergence of different IoT Technologies to guarantee continuous and seamless openness and

interoperability.

WP3 in the NEPHELE project has the objective to develop the VOStack. It includes: the development

and release of the software VOStack; the development of appropriate abstractions and translation

mechanisms supporting semantic interoperability in terms of IoT devices and related VOs management;

the development of a set of intelligent IoT devices management mechanisms; the definition and

development of a set of generic/supportive functions and IoT device virtualized functions; and the

definition and development of orchestration management interfaces for the VOs.

In this deliverable, we first describe the NEPHELE vision scoped around Virtual Object and the Virtual

Object Stack (Section 2). Section 2 also provides relations of this deliverable to other project tasks. We

continue with the state of the art related to this work (Section 3). We present the status of Task 3.1:

“Intelligent IoT devices modelling, management and interoperability” (Section 4). Subsequently, the

status of Task 3.2: “Autonomic functionalities and ad-hoc clouds” is presented in Section 5. The report

on security functionality, as a part of Task 3.1, is provided in Section 6. The status of Task 3.3: “IoT

device virtualized and supportive functions” can be found in Section 7. Activities in Task 3.4:

“Orchestration management interfaces” are reported in Section 8. The work in Task 3.5: “Intelligence

on IoT devices and interplay with VOs” is presented in Section 9. We provide the status of VOStack

implementation and discuss our open-source activities in Section 10. Finally, we conclude this

deliverable with Section 11.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 13 of 110

2 Virtual Object and Virtual Object Stack
2.1 VO Concept
Nowadays, billions of interconnected devices constantly produce data which cross the network to be

digested and processed by Cloud platforms or other IoT devices. IoT scenarios have evolved over time

providing increasingly complex and integrated services as well as a growing development of

heterogeneous sensors and devices with different resources capabilities, ranging from single-board

computers such as Raspberry Pi, with Gigabytes of memory, to microcontrollers with a few kilobytes

of memory. Furthermore, the interest that has developed around the IoT has driven the research and

development of new standards which, depending on the case, sought to respond to the needs of the

reference application context. With the passage of time, therefore, an increasingly heterogeneous context

has been created, constrained by the limited availability of device resources, in stark contrast to the need

for interoperability and scalability of new smart scenarios such as urban environments, factories,

agriculture, logistics, etc.

Virtual Object (VO) is a software service that extends the properties, attributes, and functionalities of

real-world physical devices within the digital infrastructure of the network. The VO serve several

important purposes which help to overcome limitation described above:

• Semantic abstraction: It provides a standard representation of physical device for easier

management, monitoring, and discovery of device resources.

• Interoperability: It can be used in heterogeneous scenario to bridge communication between

different standards and protocols.

• Data modelling: It enables the use of different data modelling for different purpose leveraging

physical device from complex data model transmission.

• Simulation and testing: In its Digital-twin extension, VO can be used to simulate the physical

device behaviour in a virtual environment before deployment.

• Remote management and accessibility: VO enables continuous data access and remote

management where physical device access can be limited or impractical.

• Resource consumption: It can leverage the physical device.

Virtual objects offer several advantages over physical objects, and they are an essential part of modern

computing. They are easier to create, store, and share, for example, a virtual object can be resized,

reshaped, or even migrated to a different location. Each VO is a part of a distributed application in the

edge-cloud infrastructure, and it is orchestrated as a containerized stateless micro-service. So that,

NEPHELE project aims to realize the VO as an extension of the IoT physical device in the virtualized

infrastructure of the Edge-Cloud continuum and it is positioned as a men-in-the-middle between the

physical device and the virtualized environment ad described in Figure 2-1.

Moreover, the project proposes the development of a new microservice, the composite VO (cVO),

which composes and aggregates interfaces from multiple VOs to provide advanced service for specific

clients’ application. The cVO is an entity of the application graph providing VO client interfaces to the

application meanwhile is connected to multiple VOs from which it acquires IoT data. Thus, a cVO is

not just an abstract way to describe the communication of several VOs. It is a collaboration of several

VOs towards the production and exposure of a combined set of measures/outputs. A cVO is not an

application expressed as a service graph incorporating the several VOs as nodes of the graph. A cVO

should be seen as a single VO consuming the output of several VOs and exposing a single output set

following the definition of a VO. In the case that the cVO is linked with one VO, it can provide advanced

functionalities (e.g., application specific, digital twin) for this VO. Thus, a cVO is a virtual object itself

that:

• maintains the relationship among the participating VO(s),

• consumes the output of the participating VO(s),

• illustrates a logic processing several inputs,

• exposes a new output set regarding the coalition of VOs.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 14 of 110

2.2 VOStack
In order to support the features described above, NEPHELE project aims to develop a complete

software stack, VOStack, which is divided in three levels:

• Edge/Cloud convergence,

• Backend logics (for IoT functionalities),

• Physical convergence.

Figure 2-1: VO as an extension of the IoT physical device

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 15 of 110

Figure 2-2: Virtual Object Stack (VOStack) Layers

The stack implementation is focused on development of specified functionalities to support IoT

interoperability and cooperation in the context of edge-cloud continuum in a device-independent way.

Such implementation will support computing and network function virtualization at the edge, and IoT

application scenarios like Artificial Intelligence (AI), and real-time rescue operations. It is defined per

layers, and requirements have been defined in WP2 in deliverable D2.1 and listed in two different tables.

For convenience, we present below the Functional Requirements (FR) of the VOStack from D2.1 in

Table 2.1, and the non-functional requirements supported by the multiple-layer VOStack in Table 2.2.

The implementation of these requirements will depend on the characteristics and needs of each use case.

Table 2.1: VOStack Functional Requirements

ID Description VOStack related

feature

Associated

Interface(s)

Difficulty Priority

FR_VOS_001 The VOStack

shall provide

interfaces to

connect

heterogeneous

IoT devices

directly or

through an IoT

gateway

Interoperability,

Security, and IoT

Device

Management

VO-to-Device High High

FR_VOS_002 The VOStack

shall provide

linking and

collaboration

mechanism

between VOs

across the

compute

continuum

Autonomicity

and Ad-Hoc

Networking

VO-to-VO Medium High

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 16 of 110

FR_VOS_003 The VOStack

shall provide

multi-tenant

access to IoT

devices

Interoperability,

Security, and IoT

Device

Management.

Autonomicity

and Ad-Hoc

Networking.

Generic

Functions

VO-to-VO-to-

Device.

VO-to-VO

High High

FR_VOS_004 The VOStack

shall provide

offloading

functions

between VO

across the

compute

continuum

IoT Device

Virtualization

Functions

VO-to-

Application.

VO-to-VO-to-

Device

Medium Medium

FR_VOS_005 The VOStack

shall allow the

integration of

resources across

the compute

continuum to

enhances the

capabilities of

the IoT device

IoT Device

Virtualization

Functions

VO-to-

Application

Medium Medium

FR_VOS_006 The VOStack

shall provide

mechanisms for

the VO

migration across

the compute

continuum

Orchestration

Management

VO-to-

Orchestration

High High

FR_VOS_007 The VOStack

shall allow

multiple

instances of a

VO across the

compute

continuum, and

support linking

and

collaboration

between them

Orchestration

Management

VO-to-VO.

VO-to-

Orchestration

High High

FR_VOS_008 The VOStack

shall provide a

proxy service

for IoT devices

Generic

Functions

VO-to-

Application

Medium Medium

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 17 of 110

FR_VOS_009 The VOStack

shall provide

security for the

connection of

the IoT device

and data

management

Interoperability,

Security, and IoT

Device

Management.

Generic

Functions

VO-to-Device.

VO-to-

Application

High High

FR_VOS_010 The VOStack

shall define

device

management

premises for

configuration

and control

functions,

monitoring and

diagnostics,

software

maintenance

and updates

Interoperability,

Security, and IoT

Device

Management.

Autonomicity

and Ad-Hoc

Networking.

Orchestration

Management

VO-to-Device;

 VO-to-

Orchestration

High High

FR_VOS_011 The VO Stack

shall enable the

computation of

time-sensitive

networking

(TSN)

schedules for

prioritization of

traffic between

IoT devices and

(c)VOs

Autonomicity

and Ad-Hoc

Networking

VO-to-Device Medium High

FR_VOS_012 The VO Stack

shall enable the

population of

TSN schedule

configurations

into TSN

bridges using a

technology-

specific

SouthBound

API (e.g.,

NETCONF/RE

STCONF).

Autonomicity

and Ad-Hoc

Networking.

Interoperability,

Security, and IoT

Device

Management

VO-to-Device Medium High

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 18 of 110

FR_VOS_013 The TSN

control plane in

the VO Stack

shall provide a

generic

NorthBound

API using a

well-defined

JSON schema

for application

configuration

and

requirements

processing

Autonomicity

and Ad-Hoc

Networking.

Orchestration

Management

VO-to-

Orchestration

Medium High

FR_VOS_014 The VO shall

expose a special

type of

SouthBound

interface that

can support

SDN-based IoT

devices

Autonomicity

and Ad-Hoc

Networking.

Interoperability,

Security, and IoT

Device

Management

VO-to-Device Medium High

FR_VOS_015 Clustering

capabilities

shall be

supported at the

cVO level or

Compute

Continuum

Network

Manager, for

associating IoT

nodes with

VOs,

configuring

node-specific

protocol

settings, and

implementing

proactive

routing.

Autonomicity

and Ad-Hoc

Networking.

Orchestration

Management

VO-to-

Orchestration;

VO-to-Device

Medium High

Table 2.2 VOStack non-Functional Requirements

ID Description NEPHELE related

feature

Difficulty Priority

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 19 of 110

NFR_VOS_01 The system should enable

low latency and high

bandwidth

communications, and high

computational power for

rapid response on data

processing

Cloud and Edge

Synergetic

Orchestration.

Computing

Continuum Network

Management.

Federated Resource

Management

High High

NFR_VOS_02 The system should

guarantee data security and

privacy in transmission and

storage

Security and IoT

Device Management.

VO Storage Space

High High

NFR_VOS_03 The system should support

and store various IoT data

sources with varying

workloads

Generic/Supportive

Functions.

Interoperability.

VO Storage Space.

Computing

Continuum Network

Management

High High

NFR_VOS_04 The system must be able to

represent IoT devices as

extended Digital Twins

offering additional features

and functionalities

IoT Device

Virtualized

Functions.

IoT Device

Management

Medium Medium

NFR_VOS_05 The system must be able to

receive and process data

from IoT devices and the

environment

Generic/Supportive

Functions.

Interoperability

Medium High

NFR_VOS_06 The system must be able to

store IoT data

VO Storage Space Medium High

NFR_VOS_07 The system must be able to

monitor devices and

networks to trigger alerts

when an error on a task

occurs or a specific event is

detected

Generic/Supportive

Functions

IoT Device

Management

High High

NFR_VOS_09 The system must be able to

detect objects and humans

and predict future values of

associated

risks/motion/condition

Generic/Supportive

Functions

AI models

Medium Medium

NFR_VOS_10 The system should be able

to monitor devices and

networks to deploy

additional elements when

needed

Generic/Supportive

Functions

IoT Device

Management

Medium High

The WP3 will release the VOStack, it will make available a set of open-source libraries and tools

including the specified functionalities per layers and, in accordance with the VOStack specifications,

the WP3 will specifically release two VO software implementations. Both implementations have to

adhere to the same principles and core Application Programming Interfaces (APIs), however being

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 20 of 110

aligned with specifications coming from different standardisation groups. These groups regard the W3C

Web of Thing1 (WoT) and the Open Mobile Alliance (OMA) Lightweight M2M (LwM2M), see

LwM2M – OMA SpecWorks specifications2. Both implementations utilize only the (c)VO Descriptor

to configure (c)VOs. The (c)VO Descriptor is a YAML3file that represents all different options and

mappings for a user-defined (c)VO. The descriptor is parsed during instantiation time and manages the

initialization of the Web of Things runtime and the deployment of the Virtual Object itself.

Moreover, VO will have four main interactions within the deployment environment as depicted in the

Figure 2-3, which are then implemented into the VOStack layers:

• VO-to-IoT Device Interaction: to link the physical world of IoT devices to the edge-cloud

continuum virtualized environment.

• VO-to-Applications (prosumers) Interaction: to enable data exchange between cooperative

services and to create services’ chains.

• VO-to-Orchestration Interaction: to manage VO microservice lifecycle.

• VO-to-Storage Entity Interaction: for the allocation of data in an efficient and scalable

manner.

Figure 2-3: Virtual Object Interactions

2.2.1 Edge/Cloud Convergence Layer
This layer of the VOStack is application-oriented and it oversees the management of all interfaces that

interact in communications with other edge-cloud entities present in the NEPHELE platform like

applications and orchestrators that intend to interact with the IoT physical domain and virtualized

services. Such Northbound interfaces, for instance, must be implemented to enable telemetry real-time

data transmission using standard semantic protocols like W3C and OMA-LwM2M as well as security

access. Generic and supportive functions will be exposed to consumer by this layer using standard

protocols. As defined in the deliverable D2.1, this layer must enable the interaction between (c)VO an

1 https://www.w3.org/WoT/
2 https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
3 https://yaml.org/spec/1.2.2/

https://www.w3.org/WoT/
https://omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://yaml.org/spec/1.2.2/

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 21 of 110

Application, VO-to-Application Interaction, and between VO and Orchestrator, VO-to- Orchestration

Interaction. In the first case, interfaces will rely on web-oriented protocols (i.e., Hypertext Transfer

Protocol and Hypertext Transfer Protocol (HTTP) and HTTP Secure (HTTPs)).

2.2.2 Backend Logics Layer
This layer is internal to the VO, and it does not expose interface to prosumers. The layer deals with

implementing the enhancement of VO functionalities with respect to the physical device and interacting

with the support "sidecar" services. This layer implement generic/supportive functions like data

management, authentication, authorization, telemetry, etc.

For instance, the datastore can be both internal, through the implementation of lightweight solutions

(i.e., SQLite) for the historicization of data less linked to frequent temporal updating, and external,

through the implementation of more high-performance solutions suitable for the processing of large

quantities of time-related data (timeseries) with high update frequency (i.e., InfluxDB).

VO backend logics will help to develop more efficient security capabilities, authentication, and

authorization functionalities compared to the ones implemented into physical devices with restricted

computational resources in order to ensure secure communications for VO-to-X (where X could be an

application, VO, or a physical device) interactions.

2.2.3 Physical Convergence Layer
Due to complex heterogeneity in IoT device scenario, the layer of convergence with the physical world

must face important challenges to allow the interconnection, interoperability, and device management

of as many as possible, if not all, constrained and non-constrained IoT devices. This task is therefore

mainly delegated to the southbound interfaces of the VO service which has the task of supporting several

protocols used within the IoT domain. For instance, it must be able to expose interfaces that allow the

acquisition of data through application-level protocols such as MQTT and CoAP and use different meta-

data for the semantic representation of the device and its resources according to standards such as, for

example, OMA-LwM2M and W3C-Web of things. The choice of interfaces and protocols to enable has

to be configurable in the VO during deployment by orchestrator with respect the virtualized physical

device. The VO configuration is going to be defined in the Descriptor file.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 22 of 110

3 State of the Art
In this section, we review the state-of-the-art topics related to NEPHELE. In particular we provide the

following details, Section 3.1 explains the different IoT application protocols relevant to NEPHELE,

device virtualization techniques in Section 3.2, device interoperability and management between

different IoT protocols in Section 3.3, IoT networking requirements and ad-hoc cloud networking

mechanisms in Section 3.4 and finally device intelligence in Section 3.5.

3.1 IoT Application Protocols
IoT devices shall be enabled with additional functionality, both in terms of event processing rules as

well as capability of creating a chain of services together with other entities/services present in the

continuum. The management of these “chains” requires a communication interface on constrained

devices.

3.1.1 CoAP
The Constrained Application Protocol (CoAP) is a REST (REpresentational State Transfer) protocol

based on the notion of resource to model all client/server interactions as an exchange of resource

representations. Using CoAP is possible to create a remote resource management infrastructure through

simple access and interaction functions similar to those of the HTTP protocol (PUT, POST, GET,

DELETE). Each Client/Server resource is assigned to a universal identifier, called a URI, which can be

used on the Web to obtain a representation of the resource. One of the main objectives of the CoAP

protocol is to create a Web protocol suitable for the needs of devices with limited resources in terms of

computation and energy. The way in which this protocol is to be implemented does not consist in a

simple compression of the HTTP protocol, but rather in the implementation and optimization of a subset

of the features offered by the REST architecture, in common with HTTP, in the perspective of machine-

to-machine (M2M) communication applications. The protocol standardisation conducted by the

Constrained Representational State Transfer Environments (CoRE) Working Group of the Internet

Engineering Task Force (IETF) [1].

The key features of the CoAP protocol are:

• web protocol for network nodes with limited resources,

• transport on datagram protocol as User Datagram Protocol (UDP) with optional reliability,

• asynchronous exchange of messages,

• low overhead and low header parsing complexity,

• support for Uniform Resource Identifiers (URI) resources and content-type information of the

payload,

• simple creation of intermediaries (proxies),

• ability to cache responses to reduce response times and bandwidth occupation,

• translatability into the protocol without HTTP states with the possibility of creating proxies to

guarantee HTTP nodes access to CoAP resources and vice versa.

The interaction between CoAP nodes occurs similarly to the client/server model of the HTTP protocol.

However, the nature of machine-machine interactions that occur between remote devices in IoT suggests

an implementation of the CoAP protocol in which each node acts as both client and server. Such a node

is called an endpoint. A CoAP request is equivalent to an HTTP request: it is sent from a client to a

server to request the server to perform an action (via a method code) on a resource (identified by URI).

The server then sends the original client a response code containing a response code and a representation

of the requested resource, if any. Unlike HTTP, CoAP performs these request/response exchanges

asynchronously over a datagram transport protocol such as UDP. This is achieved through a protocol

layer of messages that can support optional reliability through exponential backoff algorithm. CoAP

messages can be of four types: Confirmable (CON), Unconfirmable (NOT), Acknowledgement (ACK)

and Reset (RST). The method and response codes included in some of these messages specify that it is

a request or a response.

CoAP protocol as composed of two sublayers:

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 23 of 110

• a messaging sublayer that deals with the management of the exchange of messages which, as

mentioned before, is asynchronous and bound to UDP.

• a request/response interaction sublayer that uses Method and Response codes to process the

request or response.

The methods supported by the protocol are a subset of the HTTP protocol request methods: GET; POST,

PUT, DELETE.

CoAP supports four security modes: 1) unsecured, 2) pre-shared key with AES ciphers, 3) raw public

keys using DTLS, AES ciphers and Elliptic Curve algorithms for key exchange, and 4) DTLS together

with X.509 certificates. Application layer security is possible using RFC 8613, which defines Object

Security for Constrained RESTful Environments (OSCORE), a method for application-layer protection

of CoAP using CBOR Object Signing and Encryption (COSE). RFC 9203 specifies a profile for the

Authentication and Authorization for Constrained Environments (ACE). It uses OSCORE to provide

communication security and proof-of-possession for client keys bound to OAuth 2.0 access tokens.

CBOR

The Concise Binary Object Notation (CBOR) is a binary serialisation format loosely based upon JSON

and often used with CoAP to compress messages. CBOR supports integers, floats, strings and arrays

and maps of name/value pairs where names are represented as semantic tags. IANA maintains a CBOR

tags registry that maps semantic tags to a URL (i.e., web address) for a resource that describes the

semantics. CBOR is specified in RFC 8949 Concise Binary Object Notation (CBOR)4.

3.1.2 MQTT
The Message Queue Telemetry Transport (MQTT) protocol [80], was invented by Andy Stanford-

Clarck (IBM) and Arlen Nipper (Arcom) and is designed for machine-to-machine (M2M) applications

in an IoT environment. This application layer protocol was designed primarily with the aim of creating

a defined publish/subscribe mechanism that would allow devices to exchange messages through an

extremely lightweight protocol. This happens through the use of topic, each client publishes a message

m specifying the topic t to which it is associated so, thanks to the use of a broker, which acts as a server

within the network, all clients who have subscribed to topic t will receive the message m. Basically, in

MQTT, each node (client) can be publisher when it produces (publish) data, and subscriber when it

wants to consumes (subscribe) data, even its own data.

As in HTTP, MQTT uses the Transmission Control Protocol (TCP) and IP protocols as underlying layers,

optimising their overhead. Then, the devices communicate with their applications using TCP through

an MQTT message broker that manages message forwarding between publishers and subscribers while

also ensuring secure information exchange. Publishers and subscribers are therefore both customers of

the system and can usually perform both functions.

The reliability of the protocol is entrusted to three levels of Quality of Service (QoS):

• QoS 0- at most once delivery- No response and no new forwarding attempts. It is the minimum

level of QoS provided by the protocol and is also the fastest and lowest cost.

• QoS 1- at least once delivery-Duplicates, resubmissions, of the message are allowed, a

confirmation request is expected.

• QoS 2-exactly once delivery-the protocol ensures that no duplicates are forwarded and that it is

sent once and only once to the application subscribed to the topic. It includes a four-step

handshake.

To date, many brokers have been developed in different programming languages. Some examples are

Mosquitto (developed by the Eclipse foundation in C language), Mosca (developed in node.js) and

RabbitMQ (developed in Erlang language).

4 https://www.rfc-editor.org/rfc/rfc8949.html

https://www.rfc-editor.org/rfc/rfc8949.html
https://www.rfc-editor.org/rfc/rfc8949.html

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 24 of 110

3.1.3 HTTP
HTTP, or Hypertext Transfer Protocol, serves as the bedrock of communication on the World Wide

Web. Conceived by Tim Berners-Lee in 1989, it is an application layer protocol meticulously designed

to facilitate the exchange of data between a client, typically a web browser, and a server. At its core,

HTTP operates on a request-response model. When a user, through their web browser, initiates an action

such as requesting a web page, the browser sends an HTTP request to the server. This request specifies

the desired action, and the server, in turn, processes the request and issues an HTTP response. This

response contains the requested data or signals any encountered errors.

One of the defining characteristics of HTTP is its stateless nature. Each client-server interaction is

independent, and the server does not retain information about prior requests from a specific client. While

this simplicity aids implementation, it necessitates additional mechanisms, often in the form of cookies

or sessions, for managing user states.

Uniform Resource Identifiers (URIs) play a pivotal role in HTTP. Resources on the web, whether they

be web pages, images, or other content, are identified by URIs. Commonly, URLs (Uniform Resource

Locators) serve as a subset of URIs, providing the specific address for accessing a resource.

HTTP communicates using a variety of methods, or verbs, which convey the desired action on a

resource:

• GET method retrieves data,

• POST submits data,

• PUT updates a resource,

• DELETE removes a resource.

Headers are integral to HTTP messages, enriching them with additional information. Whether

conveying details about content type, length, caching directives, or other specifics, headers enhance the

understanding of the message, or the resource being transferred.

In the pursuit of enhanced security, HTTPS (HTTP Secure) encrypts the exchanged data between client

and server using SSL/TLS (Secure Socket Layer/Transport Layer Security) protocols. This encryption

ensures the confidentiality and integrity of the communication, a crucial aspect in today's digital

landscape.
In the context of the IoT, HTTP plays a crucial role in facilitating communication between IoT devices

and servers. IoT involves a network of interconnected devices that collect and exchange data. HTTP

provides a standardized and widely adopted protocol for these devices to communicate with central

servers, transfer sensor data, and receive commands.
However, as IoT devices often operate in resource-constrained environments with limited power and

bandwidth, there is a growing trend towards lightweight protocols like MQTT and CoAP in IoT

applications. These protocols are more efficient for constrained devices, offering reduced overhead and

improved scalability compared to traditional HTTP.
In summary, while HTTP is foundational for web communication, its role in IoT depends on the specific

requirements and constraints of the devices and the overall architecture. For resource-intensive

applications, alternatives like MQTT and CoAP may be more suitable, but HTTP remains a viable option

for certain IoT use cases, especially those requiring interoperability with web-based systems [2].

HTTP has evolved through several versions, including HTTP/1.0, HTTP/1.1, HTTP/2, and HTTP/3.

Each iteration brings improvements in performance, efficiency, and additional features, adapting to the

dynamic needs of the ever-evolving web. As the backbone of the internet, HTTP orchestrates the

seamless exchange of information, defining the user experience in browsing websites and interacting

with web applications.

3.2 Device Virtualization Techniques
The Virtual Object (VO) as a digital counterpart of a physical IoT device has experienced an evolution

of its functionality over the years. Since its introduction, in most of its deployments, the VO concept has

been commonly intended to promote the interoperability of heterogeneous devices, facilitate the

deployment of new services, improve reachability, and achieve self-management of devices [3]. Several

other features further enhanced the VO as part of a variety of fit-for-purpose introduced management

frameworks: common semantic representation of the device’s data and functionalities for enhanced

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 25 of 110

interoperability, device augmentation with compute and storage capabilities, device augmentation with

context awareness and cognitive management, device offloading and energy consumption optimization,

are just a few examples. As a further step, a more effective collaboration of several physical devices is

enabled in the virtual world by the introduction of the Composite Virtual Object (cVO) as an aggregation

of trusted VOs illustrating a new set of functions out of the interaction of several member devices

through their virtual counterparts. Deployments presented so far do not always consider a single

corresponding VO to a physical device but have also introduced solutions, adapted to their reference

scenario, where a single VO may correspond to multiple physical devices, each of them performing

distinct functions/services, or multiple VOs correspond to a single physical device [4]. Furthermore, the

combination of several VOs and cVOs along with other services, results into a new higher level of IoT

services and applications, while their orchestration and execution in the cloud and/or edge have triggered

the introduction of several methods and frameworks often targeted to a specific application area [5].

The concept of Digital twin (DT) also bases its definition on the mapping of a physical object onto a

virtual space and builds upon it to illustrate a synchronous bidirectional data exchange to monitor,

simulate, predict, diagnose, and control the state and behaviour of the physical object within the virtual

space [6]. One could think of a DT as a VO or cVO with a set of advanced features and tight

synchronicity and state matching with the physical object. It is believed that an open VO design

establishing it as a potential building block of a DT or even future cyber-physical systems would

promote significant advances in the area. Emergent applications developed in a cloud-

native/microservices-based fashion, as service chains of scalable components-microservices, leverage a

hyper-distributed execution of their interconnected components over a computing continuum of

orchestrated resources in different network domains (IoT, edge, cloud) [7]. Considering these new

requirements and potential, the VO design should be revisited to set the VO as a facilitator for: (i) a

unified devices management, overcoming interoperability issues; (ii) the development of computing

continuum native IoT applications where convergence aspects with edge and cloud computing

technologies are tackled; and (iii) the development of new cyber-physical paradigms and new IoT-driven

business models.

3.3 Device Interoperability and Management
3.3.1 NGSI-LD
The NGSI-LD (Next Generation Service Interface - Linked Data) standard5 along with its associated

API (Application Programming Interface) and broker, represents a framework for managing and

exchanging information in a Linked Data format, particularly in the context of the IoT and smart

applications. The NGSI-LD standard is defined by the ETSI CIM working group for Context

Information Management (CIM). The standard includes NGSI-LD API used for the data interoperability

in IoT, edge and cloud ecosystem to consume and update context information.

The concept of Linked Data based upon JSON-LD payloads is fundamental to effective data exchanges.

The NGSI-LD standard sets rules and conventions for how entities and their context information should

be structured and represented using linked data principles. This standardisation ensures that data can be

easily understood and processed by IoT-edge-cloud entities, making it highly interoperable.

The NGSI-LD specification is regularly updated by ETSI. The latest specification is version 1.7.1 which

was published in June 2023. Currently, several implementations of NGSI-LD context brokers are being

performed such as Orion-LD, Scorpio, Stellio.

The NGSI-LD API and data-model provide a basis for unified interaction to existing IoT devices, edge

nodes and cloud platforms. We plan to make use of available open-source implementations of this

standard to enable the registration, discoverability, application management and data interaction using

this specification. Below, NGSI-LD API and data models are described.

5 https://ngsi-ld-tutorials.readthedocs.io/en/latest/index.html

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 26 of 110

3.3.1.1 NGSI-LD API and Broker

The NGSI-LD API defines how IoT-edge-cloud applications can communicate and exchange

information using the standard of context information. It specifies the endpoints, methods, and data

formats for retrieving and updating context information about IoT-edge-cloud entities. The NGSI-LD

API enables semantic interactions, meaning that applications can make requests and receive data in a

format that carries semantic meaning. This allows applications to understand the context and

relationships between IoT-edge-cloud entities and their properties. In NGSI-LD, context information

refers to the data about entities and their properties. This information can include real-time sensor

readings, metadata, and other relevant details.

In particular, the NGSI-LD API can be implemented by means of Context Brokers such as Orion-LD6
7. Orion-LD is a context broker developed by FIWARE as an open-source framework that supports the

development of smart solutions. This context broker can run independently without requiring additional

or extra components, being lightweight and efficient to manage the data exchange. The Orion-LD

implements the NGSI-LD API including creation and servicing of contexts that are necessary when

inline contexts are used. Context information provides entity types, attribute names, and attribute values

(if applicable). The real name of an attribute (or entity type) is the expanded name, and that is what is

stored in the NGSI-LD broker. Attribute values (only string values or string values inside arrays) are

implemented if the context says that they should be8.

3.3.1.2 Entities/Things in NGSI-LD API

An entity represents an object/thing that exists in the real world. In the creation of the entity, the endpoint

/ngsi-ld/v1/entities is accessed, and it is important to define the fiware-service header.

curl --location --request POST 'NEPHELE.odins.es:1026/ngsi-ld/v1/entities' \

--header 'Content-Type: application/json' \

--header 'fiware-service: test' \

--data-raw '{

 "@context": "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld",

 "id": "urn:ngsi-ld:Device:Room005Temperature",

 "type": "Room",

 "temperature": {

 "value": 21,

 "type": "Property"

 },

 "pressure": {

 "value": 803,

 "type": "Property"

 }

 }'

In the example above, the fiware-service header has been set to a test value. It serves as a name-space

differentiator that allows several applications in a single server. Next, the data-raw field specifies the

body of the query in JSON-LD format.

Inside the body of the request, there is the ID of the entity that is going to be created, the type of the

entity and at least one variable, which represents the different real measures that the object stores.

All entities will be stored in the Context Broker. Once the entity is created, it can be checked from the

Context Broker by using the ngsi-ld/v1/entities endpoint and asking for retrieving an object with a

specific ID like in the following example:

curl --location --request GET 'http://NEPHELE.odins.es:1026/ngsi-ld/v1/entities?id= urn:ngsi-

6 https://github.com/FIWARE/context.Orion-LD
7 https://github.com/FIWARE/tutorials.Linked-Data
8 https://github.com/FIWARE/context.Orion-LD/blob/develop/doc/manuals-ld/progress.md

https://github.com/FIWARE/context.Orion-LD
https://github.com/FIWARE/tutorials.Linked-Data
https://github.com/FIWARE/context.Orion-LD/blob/develop/doc/manuals-ld/progress.md

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 27 of 110

ld:Device:Room005Temperature' \

--header 'fiware-service: test'

Please note that the entity type, as well as other parameters such as the context are returned in the body

of the answer. When querying entities, it is also possible to get all the entities that have a specific type:

curl -G -X GET \

 "http://NEPHELE.odins.es/ngsi-ld/v1/entities" \

 -H 'Accept: application/ld+json' \

 -H "fiware-service: NEPHELE" \

 -H "fiware-servicepath: /" \

 -d 'type=https://uri.fiware.org/ns/data-models%23DeviceMeasurement'

To update entities, it is discouraged to employ the entityOperations feature offered by the Orion-LD due

to the loss of control about what is going to be updated — i.e., it is error-prone and may change entities

without the user noticing. To avoid this, it is encouraged that the update of an attribute in an entity would

be done in the following way:

curl -iX PATCH \

 "http://NEPHELE.odins.es/ngsi-ld/v1/entities/urn:ngsi-ld:DeviceMeasurement:

Room005/attrs/numValue" \

 -H "fiware-service: NEPHELE" \

 -H "fiware-servicepath: /" \

 -H 'Content-Type: application/json' \

 -d "{\"value\":\"23.5\",\"observedAt\":\"2023-01-02T12:34:56Z\"}"

3.3.1.3 Smart Data Models

In NGSI-LD, the common representation of the raw-data captured from different IoT-edge-cloud entities

is enabled with Smart Data Models 9 10 11 12 which is an initiative by a consortium of relevant

organizations in the IoT sector13 14 15 16 that aims at encouraging the interoperability of applications and

services in several Smart verticals — e.g., Smart Cities, Smart Building, Smart Energy, Smart

Agriculture, Smart Health. The motivation to employ these SmartData models is that they are compatible

with the openly standardized NGSI-LD API. They include the technical representation of the model

(schema) and the human-readable document (specification). These models are free and open-source

software that does not require the payment of royalties. For example, these models define the Device

Data Model that can be also found17. The following table shows a sample of Device Model with NGSI-

LD API.

{

 "id": "urn:ngsi-ld:DeviceModel:myDevice-wastecontainer-sensor-345",

 "type": "DeviceModel",

 "category": {

 "type": "Property",

 "value": ["sensor"]

 },

9 https://smartdatamodels.org/
10 https://github.com/smart-data-models/dataModel.Building/blob/master/Building/doc/spec.md
11 https://github.com/smart-data-models/dataModel.Device/blob/master/Device/doc/spec.md
12 https://github.com/smart-data-models/dataModel.Device/blob/master/DeviceMeasurement/doc/spec.md
13 https://www.fiware.org/
14 https://www.tmforum.org/
15 https://iudx.org.in/
16 https://oascities.org/
17 https://github.com/smart-data-models/dataModel.Device

https://smartdatamodels.org/
https://github.com/smart-data-models/dataModel.Building/blob/master/Building/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/master/Device/doc/spec.md
https://github.com/smart-data-models/dataModel.Device/blob/master/DeviceMeasurement/doc/spec.md
https://www.fiware.org/
https://www.tmforum.org/
https://iudx.org.in/
https://oascities.org/
https://github.com/smart-data-models/dataModel.Device

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 28 of 110

 "function": {

 "type": "Property",

 "value": ["sensing"]

 },

 "modelName": {

 "type": "Property",

 "value": "S4Container 345"

 },

 "name": {

 "type": "Property",

 "value": "myDevice Sensor for Containers 345"

 },

 "brandName": {

 "type": "Property",

 "value": "myDevice"

 },

 "manufacturerName": {

 "type": "Property",

 "value": "myDevice Inc."

 },

 "controlledProperty": {

 "type": "Property",

 "value": ["fillingLevel", "temperature"]

 },

 "@context": [

 "https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld",

 "https://schema.lab.fiware.org/ld/context"

]

}

3.3.1.4 Interoperability of NGSI with other protocols

The interoperability between IoT devices and NGSI ecosystem contains two major software components:

• NGSI: It is the primary point of access for developers utilizing the NGSI Interface. An IoT

device’s current context can be retrieved by developers as a set of entity attributes. If they have

access privileges for certain activities, developers can also update attributes connected to

commands to send commands to devices.

• These components manage northbound communications from the device-specific protocol into

NGSI instructions and southbound communications from the NGSI Context Broker to IoT

devices. IoT integrators may now connect devices, send commands, and receive measurements

thanks to this.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 29 of 110

Any IoT standard or proprietary protocol (e.g., COAP, MQTT, Ultralight, Long Range Wide Area

Network (LoRaWAN18) can be connected to FIWARE via the IoT Agent components. Currently

FIWARE provides IoT Agents for:

• IoT Agent for JSON19 - a bridge between HTTP/MQTT messaging (with a JSON payload) and

NGSI

• IoT Agent for LwM2M20 - a bridge between the Lightweight M2M protocol and NGSI

• IoT Agent for Ultralight21 - a bridge between HTTP/MQTT messaging (with an UltraLight2.0

payload) and NGSI

• IoT Agent for LoRaWAN22 - a bridge between the LoRaWAN protocol and NGSI

• IoT Agent for OPC-UA23 - a bridge between the OPC Unified Architecture protocol and NGSI

• IoT Agent for Sigfox24 - a bridge between the Sigfox protocol and NGSI

• The OpenMTC25 Incubated Generic Enabler brings an open-source implementation of the

OneM2M standard. A northbound interface with the NGSI Context Broker is implemented as

part of the product.

• There is also an IoT Agent library26 for developing your own IoT Agent to cover any other

possible IoT Standard not covered by the existing enablers.

An open-source implementation of the OneM2M is provided by the OpenMTC Incubated Generic

Enabler. Included in the offering is a northbound interface with NGSI Context Broker. To create your

own IoT Agent to address any other IoT Standard that may not be supported by the current enablers,

there is also an IoT Agent library.

18 https://www.thethingsnetwork.org/docs/lorawan/
19 https://github.com/telefonicaid/iotagent-json
20 https://github.com/telefonicaid/lightweightm2m-iotagent
21 https://github.com/telefonicaid/iotagent-ul
22 https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN
23 https://github.com/Engineering-Research-and-Development/iotagent-opcua
24 https://github.com/telefonicaid/sigfox-iotagent
25 https://github.com/OpenMTC/OpenMTC
26 https://github.com/telefonicaid/iotagent-node-lib/

https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/lightweightm2m-iotagent
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://github.com/telefonicaid/iotagent-ul
https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN
https://www.thethingsnetwork.org/docs/lorawan/
https://github.com/Engineering-Research-and-Development/iotagent-opcua
http://www.opcua.us/
https://github.com/telefonicaid/sigfox-iotagent
https://www.sigfox.com/en
https://github.com/OpenMTC/OpenMTC
https://github.com/telefonicaid/iotagent-node-lib/
https://www.thethingsnetwork.org/docs/lorawan/
https://github.com/telefonicaid/iotagent-json
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/iotagent-ul
https://github.com/Atos-Research-and-Innovation/IoTagent-LoRaWAN
https://github.com/Engineering-Research-and-Development/iotagent-opcua
https://github.com/telefonicaid/sigfox-iotagent
https://github.com/OpenMTC/OpenMTC
https://github.com/telefonicaid/iotagent-node-lib/

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 30 of 110

3.3.1.5 NGSI-LD API and W3C Web of Things Device Representation

NGSI-LD context management supports many ontologies like W3C SSN, SAREF, etc. In particular, the

NGSI-LD device model appears complementary to the W3C Web of Things [12] device representation.

It is planned to find a way to incorporate the Web of Things device representation into the NGSI-LD

API specification. Furthermore, the Thing Description standard [13] adds the possibility to describe the

device protocol description, which we plan to use for device on-boarding/registration of devices into the

unified NGSI-LD layer. The combination of NGSI-LD and WoT device representation will be possible

because both standards are based on JSON-LD format. Recently, some relevant works [8][9][10][11]

have studied how to achieve the interoperability between W3C Web of Things and NGSI-LD

Management. More details about WoT device representation are included in the next subsection.

3.3.2 W3C Web of Things
There has been a growing emphasis on addressing the issues related to the lack of IoT device

interoperability and the presence of incompatible data models through the adoption of open standards.

The integration of IoT and the World Wide Web (WWW), called Web of Things (WoT) [12] proposes

to integrate the existing Web ecosystem with Things to provide an interoperable infrastructure which

goes beyond basic network connectivity. Similar to how the Web functions on top of the Internet's

application layer, enabling users an easy and secure means to interact with web resources through web

browsers, the World Wide Web Consortium (W3C) endeavours to establish a similar synergy between

the IoT and WoT.

The TD [13] is the main building block of the WoT standard, which is a model for describing the

capabilities of Things and network interfaces like CoAP, Modbus, or MQTT to consumers. In analogy

to how web browsers commonly access websites by using an index.html file on a web server as an entry

point, in WoT the TD also serves as the primary entry to a Thing. The TD was first published as a W3C

Recommendation standard in 2020 and recently its version 1.1 has been published with improvements

to the standard. The TD describes Things capabilities in terms of their human-readable general metadata,

interaction affordances, communication-related metadata (referred to as Protocol Bindings) for

accessing the interaction affordances, security definitions, and Web links. According to the RFC, an

affordance refers to the “perceived and actual properties of the thing, primarily those fundamental

properties that determine just how the thing could possibly be used" [13]. The interaction affordances

defined by W3C WoT are properties, actions, and events, which offer a model for consumers to interact

with Things through abstract operations rather than specific protocols or data encodings. The protocol

bindings, on the other hand, provides details required for accessing each interaction affordance on the

network with a particular protocol. A single Thing can expose each interaction affordance with various

protocols and is not restricted to one. The security definitions encompass the mechanisms deployed to

govern secure access to a Thing and its interaction affordances. Finally, the Web links provide a

hypermedia control scheme that links the Thing with other Things, documents, or representations.

The TD is a JSON-LD [14] based representation, which provides knowledge about Things in a machine-

readable representation. The TD context currently includes the following standard vocabularies: TD

core, data scheme, WoT security, and hypermedia controls. Semantic interoperability is achieved by

extending the TD with JSON-LD-based context, allowing the incorporation of domain-specific semantic

models. These models can enrich TD instances by using domain-specific vocabularies for additional

Protocol Bindings or introducing new security schemes. Furthermore, the TD specification provides a

JSON Scheme definition that can be given as input to JSON Schema validators to validate whether a

TD instance corresponds with the TD specification.

Figure 3-4 shows an example of a TD instance for a smart lamp with HTTP bindings for reference. The

TD includes the most essential elements required for describing a Thing, including the JSON-LD

@context, human-readable metadata (title and ID), security definitions, as well as interaction

affordances comprising the property status, action toggle, and the event overheating coupled with

protocol bindings. In this example, all three affordances employ the HTTP protocol for accessing the

interaction affordances and are structured as members within the form’s element. The @type vocabulary

term within the status and toggle is adopted from the JSON-LD working group and can be employed to

specify a range of diverse data types, primarily inspired by JSON data types. Additional vocabulary

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 31 of 110

terms can be used to impose further restrictions on the valid data, such as specifying the minimum or

maximum numeric values.

Figure 3-4: TD Instance for a Sample Lamp

The TD version 1.1 specification [13] defines a reusable model for representing Thing class definitions,

called Thing Model (TM), that can be used for generating TD instances. As an analogy to the concept

of abstract classes or interface definitions in object-oriented programming, the abstract class or interface

serves as a blueprint (TM) for creating instances or objects (TDs). One of the primary objectives of a

TM is to address situations in specific application scenarios such as mass production of IoT devices, or

where a fully comprehensive TD is either unnecessary or impractical to provide. TMs are considered a

superset for TD’s allowing the omission of instance-specific information such as security schemes and

partial protocol bindings. Instead, TMs incorporate placeholders for metadata such as title, id, baseURI,

and so on. The specification also provides a process for deriving valid TDs from the corresponding TMs.

During the transformation process, these placeholders are subsequently substituted with the correct

values.

Figure 3-5 presents the equivalent TM for the TD illustrated above. TM definitions are distinguished

from a TD by their “@type”: tm:ThingModel”. As illustrated below, they do not include details about

instance information, such as protocol bindings and security metadata. Additionally, a placeholder

(indicated by a pair of double curly braces) is employed for the ID metadata. These placeholders are

intended to be substituted during the conversion process to enable the utilisation of any data type as a

replacement value within a predefined placeholder map.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 32 of 110

Figure 3-5: Thing Model for the TD of the Lamp

TMs are equipped with a specialised vocabulary that facilitates to enhance the capabilities of an existing

TM through the utilisation of the “rel”: “tm:extends” relation type in the link section. This way, the

TM inherits all the definitions from the extended part. Additionally, TMs allow importing only specific

pieces of definitions from existing TMs rather than a complete set by leveraging JSON pointers and the

keyword “tm:ref”. This specifies the location of an existing sub-definition for reuse. The TM to TD

conversion process also provides mechanisms for resolving the references and extensions. The

specification also defines techniques for nesting TM and TD by employing the “tm:submodel” link,

which also allows for the reuse of the same TM for a different TD instance. In this case, the relation-

type item is intended to demonstrate the presence of sub-links within a TD. The WoT TD specification

also outlines a procedure for generating TDs from TMs, resolving all references and extensions,

effectively creating instances of them.

TM composition is a term used in the W3C WoT specification to use existing TM definitions and

integrate them into a new IoT system. For instance, one might design a new smart ventilator by

combining two sub-TM definitions: a ventilation TM offering on/off and adjust room temperature

functionalities, and an LED TM offering dimmable and RGB features, as illustrated in Figure 3-6. This

can be achieved using the links container with “rel”: “tm:submodel” keyword specifying the child TMs.

An instanceName is optional and assigns a name to the composed TM sub-childs.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 33 of 110

Figure 3-6: Thing Model for a dimmable lamp

Another important building block of the WoT architecture is a Servient which represents a software

stack responsible for implementing the core WoT elements. A WoT Servient has the capability to both

host and expose Things, as well as consume Things. Depending on the specific protocol binding in use,

Servients can perform in either a server or a client role.

In NEPHELE, the W3C WoT, specifically the TD and TM concepts are used to describe the capabilities

of the VO and their functionalities to enable communication between devices and the edge layer,

unifying the interaction and representation with and of devices. We describe the data layer as well as

the application management layer using this description language.

3.3.3 OMA-LwM2M
OMA LwM2M [15] is a device management protocol designed for sensor networks and machine-to-

machine (M2M) environment. LwM2M standard continues the work of the OMA towards developing a

common standard for managing constrained and heterogeneous devices on a variety of networks

necessary to accomplish the potential of IoT environment. The protocol is designed not only for remote

device management, but it allows the enablement of related service too. The standard is built on REST

architecture using CoAP protocol and it defines an extendible and scalable resource data model, and it

has also begun to integrate the MQTT protocol recently. The data model is used to define a LwM2M

client device as a composition of Resources organized in Objects. An Object can contain an infinite

number of Resources and each Resource is identified by its URI.

LwM2M defines the application layer communication protocol between a Server and a Client, which is

located in a LwM2M Device. Four interfaces are designed for the communications between the LwM2M

Server and the LwM2M Client:

• Bootstrap

• Client Registration

• Device management and service enablement

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 34 of 110

• Information Reporting

Following, we describe the important components.

Figure 3-8: LwM2M Server Client interactions

Bootstrap - The interface is used at bootstrapping when the device wakes up for the first time and needs

to initialize its Object(s) for the LwM2M client to register with one or more Server. A dedicated and

separated LwM2M Server is used for this specific interface.

Figure 3-7: The overall architecture of the LwM2M Enabler [5]

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 35 of 110

Figure 3-9: LwM2M bootstrap

Registration - This interface manages the Registration, Update (Keep alive like), and De-Registration

of a Client to a Server. Towards this interface, the Client send to the server information about the object

it contains and how they can be reachable.

Figure 3-10: LwM2M Registration.

Device Management and Service Enablement - For this interface, the operations are downlink operations

named “Read”, “Create”, “Delete”, “Write”, “Execute”, “Write Attributes”, and “Discover”. These

operations are used to interact with the Resources, Resource Instances, Objects, Object Instances and/or

their attributes exposed by the LwM2M Client. The “Read” operation is used to read the current values;

the “Discover” operation is used to discover attributes and to discover which Resources are implemented

in a certain Object; the “Write” operation is used to update the values; the “Write Attributes” operation

is used to change attribute values and the “Execute” operation is used to initiate an action. The “Create”

and “Delete” operations are used to create or delete Instances.

Figure 3-11: LwM2M operations

Information Reporting - This interface provides both uplinks, Notify, and downlink operations like

Observe or Cancel Observation. This interface is used to send the LWM2M Server a new value related

to a Resource on the LWM2M Client.

Figure 3-12: LwM2M information reporting

Table 3.1 lists the relationship between Operations and Interfaces.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 36 of 110

Table 3.1 Operations and Interfaces relationship.

Interface Direction Operation

Bootstrap Uplink Request Bootstrap

Bootstrap Downlink Write, Delete

Client Registration Uplink Register, Update, De-register

Device Management

and Service

Enablement

Downlink Create, Read, Write, Delete,

Execute, Write Attributes,

Discover

Information Reporting Downlink Observe, Cancel Observation

Information Reporting Uplink Notify

LwM2M operations for each interface are mapped via CoAP methods. In particular, each operation,

except Notify, is encapsulated in a Confirmable message (CON) CoAP type and the ACK is used to

provide the payload response too. Notify, on the other hand, can be both Confirmable and Non-

Confirmable (NON).

3.3.3.1 Resource model

In the OMA-LwM2M proposed model, the basic information that an LwM2M client transmits is a

Resource data, while Objects are composed of a set of Resources. An object is used to describe and

control a specific software/hardware component of the device (such as sensors, antennas, or device

firmware) with associated resources (e.g., value, unit, max value, min value). Depending on the

characteristics of the Object, we may have one or more instances of the same object on the device. For

example, that we have two temperature sensors (internal sensor and external sensor), then we will have

two instances of temperature object that describe the device. The two Objects will be distinguished

within the URI by the Object instance level. The figure below represents an example of the resource

model used in OMA-LwM2M.

Figure 3-13: LwM2M resource model

The CoAP URI path is defined by objectID/InstanceObjectID/ResourceID. Following the standard, the

Object Temperature sensor is defined by ID 3303 and the value of its sensor, resource sensor value, is

defined by id 5700. Using this ID is possible to build the URI, in this case 3303/0/5700. A second sensor

of temperature in the same device can be identified using a different InstanceObjectID, the URI will be

3303/1/5700. Object and their resources are defined using meta-model declared and shared between

client and server. An object can be defined using an XML file like described in the following figure.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 37 of 110

Figure 3-14: LwM2M resource model in XML

Each Object and Resource is defined to have one or more operations that it supports. The LWM2M

standard support different data formats for data transmission like JSON or TLV.

The OMA LwM2M standard provides a public registry of "Standard Objects"27 but each developer can

create their own object from OMA objects and the provided resource models.

Moreover, the LwM2M defines access control mechanism per Object entity based on associated Access

Control Object Instance. An Access Control Object Instances contains Access Control Lists (ACLs) that

define which operations on a given Object Instance are allowed for which LWM2M Server(s). For

instance, a server could be authorized to perform all operations but a different one could be authorized

to perform only Read operations.

Figure 3-15: LwM2M access control object instance

27 http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 38 of 110

3.4 Networking
This section focuses on networking requirements at the IoT level and the different techniques for ad-

hoc cloud networking.

3.4.1 Networking Requirements at IoT Level
In this section, we focus on the following three IoT concepts that define how end devices in the network

operate and collaborate among each other: self-organising networks, mobile edge computing and multi-

radio technologies.

We start by providing the definition and an explanation of these concepts in IoT. For each concept, we

provide multiple references of existing works in the state-of-art. Then, we highlight their impact on time

sensitive and critical IoT applications such as post-disaster management.

Self-organised networks in IoT refer to decentralised and adaptive communication infrastructures

where devices autonomously organise and optimise their connectivity without centralised control [16].

In these networks, IoT devices collaborate to form dynamic and efficient connections, adapting to

changes in the environment or network conditions. The self-organising nature eliminates the need for a

central coordinator and allows devices to join or leave the network seamlessly. This autonomy enhances

the scalability, flexibility, and resilience of IoT deployments, as devices can efficiently share

information, coordinate tasks, and collectively respond to emerging challenges. Self-organised networks

in IoT leverage principles such as distributed decision-making, intelligent routing algorithms, and

collaborative protocols to achieve efficient and adaptive communication among a diverse set of

interconnected devices. In [17], the authors propose a cross layer solution named self-organising and

self-configuring algorithms for efficient data communication for IoT (2SAEC-IoT). The approach aims

at ensuring the continuity of services for IoT applications, dealing with sensitive data, by tolerating

failures that can occur on communications and devices. It is based on distributed algorithms and

considers communication parameters related to MAC, network, and transport layers.

Mobile edge computing (MEC) in IoT refers to a paradigm where computation and data processing

capabilities are brought closer to the edge of the network, typically within the proximity of IoT devices,

on mobile units such as drones or robots. Unlike traditional cloud-centric models, MEC distributes

computing resources to the edge of the network, enabling faster and more responsive processing of IoT

data. In this context, edge servers, deployed on mobile units at the edge of the network infrastructure,

manage computational tasks locally, reducing latency and bandwidth usage. MEC enhances the

efficiency of IoT applications by enabling real-time data analysis, rapid decision-making, and reducing

the need for extensive data transmission to centralised cloud servers. By leveraging the computational

power at the edge, MEC contributes to improved scalability, reduced latency, and increased autonomy

for IoT devices, making it a key enabler for applications demanding low-latency responses and efficient

use of network resources. In [18], a complete overview of multi-access edge computing solutions is

provided. The overview focuses on mission-critical applications, resource allocation schemes and

deployment of these solutions on mobile resources. In [19], the authors provide a detailed survey on the

problem of combining Edge and Cloud to manage task offloading. The survey focuses on existing works

in literature that propose either optimization techniques, or artificial intelligence techniques or control

theory to perform task offloading. Many aspects are taken into consideration in this study: the objective

function, the granularity level, the use of Edge and/or Cloud infrastructures and the integration of mobile

edge devices. For instance, in [20] the authors introduce the DRUID-NET framework. It incorporates

analytic dynamical modelling of resources, workload, and networking environments in wireless

communications and mobile edge computing. It introduces new estimators for time-varying profiles.

The goal is to develop innovative resource allocation mechanisms that consider service differentiation

and context-awareness to ensure well-defined QoS metrics. The approach combines tools from

Automata and Graph theory, machine learning, modern control theory and network theory.

Multi-radio technologies in IoT involve the integration of multiple communication interfaces within

IoT devices to enhance connectivity and flexibility. These devices are equipped with multiple radios,

such as Wi-Fi, Bluetooth, Zigbee, and cellular technologies, allowing them to adapt to diverse

communication environments and requirements [21]. The use of multi-radio capabilities in IoT

facilitates seamless communication across various networks, enabling devices to dynamically switch

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 39 of 110

between different radio interfaces based on factors like data volume, energy efficiency, and network

availability. This approach enhances the reliability and robustness of IoT deployments, enabling devices

to optimise their communication strategies for different use cases and scenarios. By leveraging multi-

radio technologies, IoT devices can efficiently interact with a variety of networks, supporting

applications ranging from short-range sensor networks to long-range cellular connectivity, contributing

to the overall flexibility and adaptability of the IoT ecosystem. To analyse the advantages of using multi-

radio technologies, [22] presents an energy-monitoring platform to collect per-packet energy

consumption, packet delivery ratio (PDR) and other parameters of LoRaWAN, NBIoT, and Sigfox.

Results showed the comparative energy saving when adopting multi-radio technologies in static and

mobile nodes for indoor and outdoor scenarios. [23] presents a lightweight method for selecting the

optimal communication technology in a multi-radio sensor network based on the environment and the

data requirements the nodes must fulfil, such as energy, delay, and cost, using a low computation time.

RODEN [23] enables dynamic (re)selection of the best route and radio access technologies based on the

data type and requirements that may evolve over time, potentially mixing each technology over a single

path.

Integrating self-organised networks, mobile edge computing, and multi-radio technologies schemes is

essential to provide solutions to mission-critical scenarios such as post-disaster management. In the

aftermath of a disaster, traditional communication infrastructure may be compromised, making it

challenging for first responders and emergency personnel to coordinate efforts. Self-organising

networks enable IoT devices to autonomously establish communication links, facilitating swift and

decentralised collaboration among rescue teams, drones, and sensor networks. Mobile edge computing

brings computational capabilities closer to the disaster site, allowing real-time data analysis for informed

decision-making without relying heavily on distant cloud resources. Additionally, multi-technology

support equips IoT devices with diverse communication interfaces, ensuring robust connectivity even

in heterogeneous and dynamic post-disaster environments. This comprehensive integration enhances the

efficiency, reliability, and adaptability of post-disaster management systems, enabling rapid response,

resource optimization, and effective coordination in the face of challenging conditions.

3.4.2 Ad-hoc Cloud Networking
3.4.2.1 Time-Sensitive Networking

Time-Sensitive Networking (TSN) encompasses a set of standards developed by the Time-Sensitive

Networking task group within the IEEE 802.1 working group. These TSN standards specify methods

for transmitting data with high time-sensitivity over Ethernet networks that are deterministic. The

majority of TSN projects extend the IEEE 802.1Q – Bridges and Bridged Networks standards, which

deal with Virtual Local Area Networks (VLAN) and network switches. These extensions aim at data

transmission with bounded latency and high reliability. TSN mechanisms are particularly relevant to

areas, such as automotive and industrial control, where real-time Audio/Video Streaming and control

streams are used in converged networks.

Numerous IEEE 802.1 specifications are available, including 802.1Qbv -- Time Aware Shaper [24],

IEEE 802.1 Qbu Preemption, and IEEE 802.1AS Timing and Synchronisation. These specifications

provide support for various features and functionalities for network communication. For instance,

802.1Qbv is associated with the Time-Aware Shaper (TAS) mechanism for controlling latency, whereas

802.1Qbu offers the Preemption feature for interrupting and resuming frame transmission. In addition,

802.1AS focuses on timing and synchronisation within the network. These IEEE 802.1 standards are

integral components of modern networking, providing essential tools for the transmission of data over

networks with different performance requirements.

In the context of IEEE 802.1 standards, 802.1Qbv [24] introduces a transmission gate operation concept

for each traffic class queue, as depicted in Figure 3-16. At the egress port of a TSN switch, outgoing

frames go through a Traffic Classification block that categorises different streams to their respective

traffic classes. This classification process is vital in preventing traffic overload, which could otherwise

affect the switches. At T1, the traffic class 0, which is assigned to traffic priority 0, is open for

transmission. The packets are then queued into various traffic classes based on the state of the

transmission gates. These gates are either open or closed, and their status is controlled by a Gate Control

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 40 of 110

List (GCL). A GCL contains multiple schedule entries for each output port, allowing selected traffic to

pass through open gates to the transmission selection block, which provides access to the medium. For

a TSN switch with IEEE 802.1Qbv schedules to function as expected, the clocks of all switches should

be synchronised. This would ensure that all TSN switches reference the same cycle base time in their

schedules. Such synchronisation can be attained via the Precision Time Protocol (PTP). IEEE 802.1Qbv

coupled with PTP provides the means for the implementation of appropriate GCL schedules and time

synchronisation, which can guarantee the transmission of high-priority critical traffic without

interference from other best-effort traffic. This eventually can ensure bounded delay and low jitter of

scheduled traffic, as well as protection of high-priority flows.

Figure 3-16: TSN bridge internals based on IEEE 802.1Qbv

3.4.2.2 Software-Defined Wireless Networking

Software-Defined Wireless Networking (SDWN) can support intelligent, programmable, and logically

centralized control mechanisms that dynamically adjust protocol functionalities to achieve improved

performance and resource utilization, addressing specific performance demands from IoT applications.

They adopt the typical Software-Defined Networking (SDN) architecture, where the application plane

is responsible to communicate application requirements, the control plane to implement control

mechanisms and the data plane to communicate the data.

However, wireless IoT deployments are often affected by radio signal issues, e.g., due to mobility or

interference, which can impair control communication. Furthermore, the latter may also be characterized

by increased overhead. To tackle the challenges of intermittent connectivity with the controller, control

message scalability, and mobility, several SDWN solutions have been proposed in the literature.

For example, they target control channel issues, such as (i) SDN-WISE [25] introducing stateful routing

tables and proactive routing decisions to reduce the number of interactions with the controller; (ii)

TinySDN [26] implementing a distributed control plane architecture based on multiple controllers; and

(iii) Atomic-SDN [27] proposing a time-sliced mechanism that separates the SDN control from the WSN

data plane messages using designated flooding periods for the control messages. Application-aware

service provisioning is investigated in Soft-WSN [28], implementing topology control, device, and

network management to meet run-time and application-specific requirements.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 41 of 110

CORAL-SDN [29] and its evolution VERO-SDN [30] solutions adopt a modular controller architecture,

multiple configurable topology discovery and flow establishment mechanisms and an out-of-band

approach to handle control overhead, i.e., utilize a long-range low-rate control interface and a short-

range high-rate data interface. Furthermore, SD-MIoT [31] augments VERO-SDN with a better support

of mobile IoT nodes, through: (i) mobility-aware topology control, utilizing a hybrid of global and local

topology discovery algorithms; (ii) routing mechanisms adapted to mobility employing a hybrid

combination of reactive and proactive flow establishment methods; and (iii) an intelligent algorithm that

detects passively in real-time the mobile network nodes.

Lastly, MINOS [32] is a multi-protocol SDN platform that implements: (i) logically centralized network

control of diverse and resource-constraint IoT environments; (ii) multiple protocols that are deployable

and configurable on-demand; (iii) individual protocol configurations per node; and (iv) flexibility to

accommodate new protocols and control algorithms.

3.5 Device Intelligence
This section introduces the recent advancements as well as challenges in on-device intelligence in IoT.

As we are using machine learning (ML) and complex event processing (CEP) for on-device intelligence

in this project, we consider research work on ML and CEP.

Over the past decade, the advancement of ML applications has been propelled by the emergence of big

data and enhanced computational capabilities. This has led to a surge in large-scale AI models, such as

ChatGPT [33], which demands extensive resources and significant power consumption. The growing

awareness in the ML community emphasises the escalating resource requirement and environmental

unsustainability associated with big AI models. Tiny Machine Learning (TinyML) has emerged as a

powerful paradigm that bridges the gap between ML and embedded systems. It brings real-time AI

capabilities closer to the edge, shifting data processing from data centres to IoT devices. TinyML offers

sustainability, data privacy, and efficiency advantages by minimising the need for cloud data

transmission. The current estimate suggests that over 250 billion IoT devices are in active use today

[34], with continual rising demand, particularly in the industrial sector.

TinyML is surging across research and industrial communities. Recently, a survey [35] summarised

breakthroughs and challenges for promoting embedded ML. Better algorithms [36], [37] are designed

to use resources, improve model performance, and optimise the deployment in a real-world environment

more efficiently. Also, ultra-low-power AI chips [38] and accelerators [39] have been proposed to

support always-on ML capability for an extended period by a battery. However, a joint design of

hardware and algorithm [40], [41]is required to squeeze the performance since TinyML delivers ML

solutions to constrained devices with limited resources. Moving a step forward, frameworks for

characterising and assessing ML deployment on the edge [42], [43] help us systematically tackle

potential issues. Many platforms and resources, such as open online courses [44], X-CUBE-AI [45]

from STM, Apache’s TVM [46], and TensorFlow Lite for Microcontrollers [47] from Google, are made

available to accelerate TinyML. Besides, remarkable applications of TinyML show up across all fields,

see [19] – [21].

However, traditional TinyML solutions assume models are trained in powerful machines or the cloud,

and it is afterward uploaded to the edge device. The microcontroller unit (MCU) only needs to perform

inference. This strategy treats models as static objects, which may cause performance degradation in

real-world deployment environments due to evolving input data distributions [48]. To learn from new

data, the model must be retrained from scratch and re-uploaded to MCUs, making the deployment of

TinyML in the industry environment a challenging task.

Online learning can be a promising solution to this problem [49]. An ML system has two tasks: inference

and training. Online ML involves performing these tasks online, i.e., processing data sequentially

without revisiting previous samples, saving memory resources, and ideally not sacrificing model

performance. However, less attention is paid to online learning [36], [42] compared with batch/offline

learning because most ML engineers tend to assume that devices and their data are always available as

a batch. A few works [50], [51] discuss how to prevent catastrophic forgetting problems of incremental

online learning in NN. River is a popular Python library for online ML [49]. The neural network (NN)

training at the edge is much less common than inference because of limited resources and reduced

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 42 of 110

numerical precision. According to [52], good performance can only be guaranteed when training and

inference run on the same dataset. Otherwise, the accuracy of the model will decrease over time.

Therefore, the author suggests retraining the network on the device regularly, in their case - Raspberry

Pi. In [53], a shallow NN is implemented at the edge for inference, powered by an NVIDIA Jetson. The

edge node is connected with a deep NN that resides in the server. To save energy, deep NN is only used

to transfer knowledge to shallow NN when a significant drop of performance at the edge is detected.

Similarly, a near real-time training concept is proposed in [54] for computer vision tasks on NVIDIA

Jetson. Whenever a new object class is detected, a new NN model is initialised using the old model’s

weights, retrained at the fog, and be ported back to the edge. In another work [55], the checkpointing

strategies are adopted to save training consumption at the edge, whereas in [56], incremental learning is

applied to support the training of the k-nearest-neighbour model on Raspberry Pi. In [57], expert

feedback is provided as labels to an unsupervised NN on the fly, thus turning unsupervised learning into

semi-supervised learning. We believe that online learning is a perfect fit for TinyML applications. The

concept helps us develop algorithms with lower memory footprints and keep models up to date in

changing environments. Thus, we built a TinyOL system [58] which can fine-tune the pre-trained model

directly on constrained devices using field streaming data by leveraging online learning settings.

CEP is a widely deployed technique to process events and detect patterns from multiple heterogeneous

streaming sources. The user can define logic rules to describe the desired sequence and pattern of

primitive events. The CEP system then runs reasoning on arriving events against the rules and produces

complex (derived) events upon matching. The system can address sensor networks’ ubiquity by

efficiently matching input streaming events against a pattern, where irrelevant incoming data can be

discarded immediately. A survey [59] discussed the early works of research, implementation,

terminology, applications, and open issues in CEP. Several commercial and open-source event

processing tools have been developed in recent years [60], [61]. Work [62] studied state of the art on

CEP mechanisms and presented their drawbacks in heterogeneous IoT environments. A survey [59]

discussed the techniques, the opportunities, and the challenges of CEP in the big data era. While most

CEP tools are designed for centralised cloud analysis, works like [63] try to extend the CEP to mobile

devices to leverage decentralised architectures. In [64], a by-partitioning CEP pipeline is proposed to

use both edge and cloud resources for stream processing. A micro-service-based method is introduced

in [65] to manage CEP in IoT systems. A few works [66], [67] focus on a hierarchical complex event

model to adapt CEP systems in distributed sensing environments. Although these solutions proved to

work in IoT systems, they do not work on the sensor networks composed of constrained MCUs. In their

works, the IoT devices are usually Raspberry Pi-class with far more available resources. This class of

devices does not fit into the scope of constrained IoT devices. Besides this, they assume the logical

patterns do not need to be updated after deployment and are thus flashed to the devices prior to the

runtime as static rules, which restrict the CEP engine’s versatility in the context of IIoT applications. To

address the issue, we designed the Micro Complex Event Processing μCEP [68] engine following the

same language introduced in the reasoning system ETALIS [69], which can continuously match

incoming events against user-defined patterns directly at the embedded devices with low latency and

high throughput.

Combining ML with CEP can be a promising solution to circumvent some technical limitations in the

current IoT system. In work [70], the author surveyed the synthesis of both paradigms and their

transferability to intelligent factory use cases. Some researchers tried to derive CEP reasoning rules

using ML methods [71]–[73]. A Bayesian network is used to predict upcoming online events in work

[74]. Many CEP and ML-based solutions have been applied in the real world. A CEP and ML-based

approach to support fault-tolerance of IoT systems is proposed in work [75]. In [76], a framework based

on CEP and deep learning is implemented, and an unattended bag computer vision task is illustrated to

evaluate its feasibility. Unlike other works, CEP is used to schedule distributed ML training on

Raspberry Pi in [77]. Nevertheless, many implementation designs depend on the usage of the cloud for

communication. Very few touch the area of constrained devices and evaluate their approaches under

industry settings.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 43 of 110

4 Intelligent IoT Devices Modelling, Management, and

Interoperability
The following sections provide information regarding the VO descriptor which is a declarative way to

define a VO based on the related semantics and modelling, i.e., (a) W3C WoT and (b) OMA-LwM2M.

Following we provide analytical information regarding the interoperability and relevant solutions with

W3C WoT and with OMA-LwM2M. Finally, we discuss the semantic interoperability between WoT

and NGSI-LD.

The overall goal of Task 3.1 is to develop the set of features that will be supported by the VOStack

layers, which includes interoperability, IoT device management and security. To reach this goal, this

task designs and develops the semantic models required for effectively managing IoT devices and their

VOs for enabling semantic interoperability in the VO. Also, we provide bi-directional translation

mechanisms between two different well-known semantic models used to describe VOs for enabling

semantic interoperability between them. Furthermore, the interaction with IoT devices using different

communication protocols, as well as a set of basic management functionalities is enabled. This task

additionally delivers security by-design mechanisms for ensuring the data protection and General Data

Protection Regulation (GDPR) compliance privacy preserving in all data exchanges between

constrained IoT devices and VO Edge. Finally, this task integrates digital twinning as a 3D

representation for the various IoT attributes to provide an intelligible way to assert multi-states,

monitoring, and analytics.

In this task, we have used the following technologies:

• W3C Web of Things technologies such as TD and TM [13] for describing VOs and their

functions.

• W3C semantic web technologies such as RDF, OWL, SPARQL, SHACL shapes, ontologies,

and RDF Mapping Language (RML) for semantic data translation between device descriptions

provided in NGSI-LD [78]and W3C WoT TD [13].

• Different communication protocols such as HTTP [79], MQTT [80], and CoAP [81]to support

the interaction with IoT devices.

• Web technologies such as REST [82] for defining the management interface of the virtual object

functions.

• On-Dev-App Management with OMA LwM2M .

• Security technologies such as TLS, DLT, DID, XACML, OpenID at the VO layer.

• Internet-based open standardised protocols defined by IETF for authentication, authorization,

key establishment, channel protection, integrity, confidentiality (e.g., EDHOC, OSCORE,

ACE-Oauth) to guarantee the security in data exchanges between IoT constrained devices and

VO Edge nodes.

• IoT security assessment and testing methodology developed in the ARMOUR H2020 project.

This task contributes to the deliverable by providing:

• A tool that can automatically create TDs based on provided TMs for devices and virtual object

functions to further enhance the capabilities of the IoT devices with additional properties and

exposes the device properties to the Web via a WoT Servient to enable interoperable data

consumption/control by other applications.

• A REST API for virtual object function management that provides rule management,

compatible IoT devices for rules, and deploy/unload rules from devices at runtime according to

their properties.

• Application of the tool and API to manage rules on a Siemens thermostat that is rule-enabled

and publishes sensor data via MQTT.

• A tool that can automatically provide semantic translations between NGSI-LD and W3C WoT

TD.

In this section, we address the functional requirements FR_VOS_001 from Table 2.1 and non-functional

requirements NFR_VOS_05 and NFR_VOS_06 from Table 2.2.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 44 of 110

4.1 VO Descriptor
In the context of NEPHELE, we aim to utilize only the (c)VO Descriptor to configure (c)VOs. The

(c)VO Descriptor is a YAML file that represents all different options and mappings for a user-defined

(c)VO. The descriptor is parsed during instantiation time and manages the initialization of the runtime

and the deployment and self-configuration of the Virtual Object. In Table 4 we provide information

about all configurations (one at each index) of the YAML Descriptor along with the available values

and the relative description of each key-value pair.

Table 4.1: Lists of all configurations of the VO Descriptor

ind

ex

Dictionary Item or list Available values description

1 name “String” Name of the VO

2 type [VO, cVO] Type of the Virtual

Object. Can be one of:

VO/cVO

3

resourceType

specification [WoT, omaLwM2M] Protocol

version 1.1 Version of VO

4

Deployment type

[A, B]

Deployment Type.

Can be one of: A (the

associated device is

running the WoT

runtime), B (not

running the WoT

runtime)

5

Catalogue port

9090 Catalogue port (port of

an HTTP server) of the

VO from where it is

model can be

consumed

6

bindingNB

bindingModeNB [H, M, U] Values: H (HTTP), M

(MQTT),

U(CoAP/UDP)

hostname “string” Hostname for the DNS

record of the VO

ports

HttpPort int Port for Http server

CoAPport int Port for CoAP server

brokerIP "mqtt://localhost:1883" IP of MQTT Broker

serverCert “string” Path to a certificate to

instantiate an HTTPS

server

serverKey “string” Path to a private key to

instantiate an HTTPS

server

mqttCAFile “string” Path to the certificate

file of an MQTT

NorthBound broker

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 45 of 110

OSCORECredentialsM

ap

“string” Path to a JSON

Credentials Map for

OSCORE (CoAP

server)

Security

NB

securitySche

me

[nosec,basic,bearer] The security scheme

that will be used.

username “string” If `securityScheme` is

set to basic, set the

desired username-

password

password “string”

token “string” If `securityScheme` is

set to bearer, set the

desired token

7

bindingSB

bindingModeSB [H, M, U] Values: H (HTTP), M

(MQTT),

U(CoAP/UDP)

mqttCAFile “string” Path to the certificate

file of an MQTT

NorthBound broker

OSCORECredentialsM

ap

“string” Path to a JSON

Credentials Map for

OSCORE (CoAP

server)

Security

SB

securitySche

me

[nosec,basic,bearer] The security scheme

that will be used.

username “string” If `securityScheme` is

set to basic, set the

desired username-

password

password “string”

token “string” If `securityScheme` is

set to bearer, set the

desired token

8 databaseConfig

timeseri

esDB

influxDB [“enabled”,”disabled”] Flag that enables/

disables the InfluxDB

connection. Can be

one of: enabled,

disabled

address "http://wotpy-influxdb-

cvo:8086"

URL of where the

InfluxDB is deployed

dbToken “string” Token used from the

VO to access the

database

persiste

ntDB

SQLite [“enabled”,”disabled”] Flag that enables/

disables the SQLite

database. Can be one

of: enabled,disabled

dbFilePath “string” Optional field that sets

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 46 of 110

the path to save the

database

9 genericFunction [forecasting,

mean_value, vo_status,

device_status]

List of generic

functions that will be

made available to the

user-defined scripts.

10 periodicFunction

example_function

1 sec

User-defined

functions that will be

executed periodically

Is a map of function

names and their

periodicity in seconds

11 consumedVOs exampl

e_VO_

name

url "http://vo1:9090/vo_nam

e"

Catalogue endpoint of

the Virtual Object to

be consumed in case

of a cVO

events [“string”] List of events whose

subscriptions need to

be mapped to user-

defined functions

propertyCha

nges

[“string”] List of properties

whose subscriptions to

changes need to be

mapped to user-

defined functions

In the following sections we discuss the interoperability and relevant solutions of different semantic

models. Also, the main goal of the VO is to provide a proxy service of the devices towards the

application layer while also storing the data in databases. Specifically, the enhanced functionalities of

the VO and all device management can be accessed through the VO.

4.2 Interoperability and Relevant Solutions with W3C WoT

The VO is described semantically according to the W3C Things Model. As explained in section 3.3.2,

the W3C Thing Model is a TD that does not contain Thing instance-specific information, such as

concrete protocol usage, or name. In the following listing, a TM describing a Siemens thermostat device

is shown in Figure 4-17, providing common metadata, and describing the interaction affordances such

as Properties, Actions and Events. As can be seen, the ID of the device contains a placeholder called

THERMOSTAT_NUMBER which will be instantiated during the TD creation. Also, we use the @type

metadata of the TM to annotate the device with additional semantic vocabularies: the brick ontology to

specify the device is a thermostat and the µCEP vocabulary [69] to indicate its support for lightweight

CEP processing. µCEP embedded devices are equipped with a lightweight engine that enables them to

effectively process raw data streams, infer complex events using rules, and derive intelligent insights

from the data [35], [36].

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 47 of 110

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 48 of 110

Figure 4-17: Thing Model Describing a Siemens Thermostat

Annotating the thermostat in this way plays a fundamental role in ensuring semantic clarity and

interoperability, enabling other software components in our solution the capability to reason on it and

automatically infer insights based on these capabilities. In the next section, we provide details on the

semantic model that we designed to describe the functionalities of a VO using µCEP rules.

4.2.1 Semantic Model for VO Functions
The existing solutions developed for IoT environments often assume a fixed functionality for devices,

which means once they are deployed in the environment their capabilities remain static. For instance,

assume a smart building that is equipped with several thermostats, each configured with a similar set of

functionalities e.g., regulating the temperature on a preferred value. However, smart environments are

not static and dynamically evolve based on situations like change in user requirements, energy efficiency

requirements or performance optimization. Therefore, the motivation behind our approach is the

evolving nature of requirements and the need for deployed devices to update and extend their

functionality dynamically at runtime. However, manually customising the behaviour of these devices is

tedious. Therefore, our solution to this challenge is utilising µCEP rules, which can be dynamically

pushed to the deployed WoT VO’s for extending their capabilities at runtime. This approach empowers

VO devices to update their behaviour without the need for manual intervention or reconfiguration and

enhances the flexibility and adaptability of devices.

To integrate µCEP rules with the W3C WoT architecture and therefore provide interoperability among

these rules and with the VO stack, we also model them semantically according to the TM. In Figure

4-18, we demonstrate our TM model for a sample µCEP rule that can calculate the average temperature.

Similar to a TM of a VO device, this model also includes an additional @type modelled as

“mcep:ThingFunction” to indicate its capability to change the functionality of a device. Moreover, the

µCEP rule is modelled as a property named “mcep:rule”, allowing to define the rule itself as a string.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 49 of 110

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 50 of 110

Figure 4-18: A Sample µCEP Rule Modelled as a Things Model

We also model additional knowledge within the properties of the µCEP rule such as the environmental

parameters that a rule operates on with the “mcep:operates_on” field and the “mcep:deployable” field

indicating the device types that this rule can be deployed on. In our example, the rule is restricted to

being deployed on a device type thermostat and that it supports the µCEP rule engine software stack.

This modelling ensures that only devices capable of changing the specified environmental properties

(e.g., temperature, humidity, lighting) are eligible for rule deployment. It prevents the deployment of

rules to arbitrary devices that cannot affect the desired environmental changes, for instance a pressure

sensor that has no control on the parameter temperature or that is not enabled with the µCEP software

stack is ruled out of the automatic reasoning.

Additionally, a TM of a VO function, models properties such as e.g., “averageTemperatureStart” and

“averageTemperatureStatus” to deploy the µCEP rule on a compatible µCEP device. For instance, the

“averageTemperatureStart” property indicates how to start a rule on a VO at runtime and the

“averageTemperatureStatus” models the interface for retrieving the current status of a deployed rule on

a VO.

4.2.2 Semantic Model for Device Intelligence
TinyML has gained widespread popularity where machine learning is democratised on ubiquitous IoT

devices, processing sensor data everywhere in real-time. As the TinyML development progresses, we

need to manage heterogeneous resources in TinyML systematically, including devices and TinyML

models. However, managing TinyML, especially in the industry, where mass deployment happens,

presents various challenges, including hardware and software heterogeneity, non-standardized

representations of ML models, device, and ML model compatibility issues. IoT devices are typically

tailored to specific tasks and are subject to heterogeneity and limited resources. Moreover, TinyML

models have been developed with different structures and are often distributed without a clear

understanding of their working principles, leading to a fragmented ecosystem. Questions to be addressed

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 51 of 110

include: How to find which IoT devices in the inventory have the necessary sensors and capability to

support a given ML model without examining each device individually? How to discover existing NN

models to be executed on a given embedded device without spending time reinventing a new model?

How to manage and reuse TinyML components at scale? How to orchestrate the discovery result into

an IoT application? Considering these challenges, we propose to use Semantic Web technologies to

enable the joint management of TinyML models and IoT devices at scale, from modelling information

to discovering combinations and benchmarking, and eventually facilitate TinyML component exchange

and reuse. Here, we propose an information model, TM, like the TM for the CEP rules in the last section.

This TM is designed to describe NN models aligned with the W3C WoT, therefore providing

interoperability among these models and with the VO stack. Similar to a TM of a VO device and a CEP

rule, this model also includes an additional @type modelled as nnet:ThingFunction to indicate its

capability to change the functionality of a device.

Figure 4-19 shows the TM for TinyML models. We use the prefix nnet: to identify the namespace of

our NN ontology: https://w3id.org/tinyml-schema/neural-network-schema. Here, metadata can be added

to enrich an ML model. For instance, ID is used to identify a model uniquely. The property title is the

name of the model. Similarly, a ML model can have a human-readable description. Furthermore, a

neural network consists of various layers with the input layer being the first layer and output layer being

the last layer. Each layer contains individual information, e.g., input shape and output shape. Also,

model-specific information is covered in the ontology, which is essential for gaining insight into an ML

model and relating the model to hardware. For example, the RAM and Flash requirements are critical to

assess whether a model fits into an IoT device and are described as subclasses of s3n:Memory to conform

to the TD. Additionally, different sensors and relevant information are assigned to a model for imposing

sensor requirements. The input and output properties supply knowledge about the model usage.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 52 of 110

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 53 of 110

Figure 4-19: TinyML Modelled as a Thing Model

4.2.3 Overview of VO Descriptor Based on W3C WoT
Until now, we discussed the individual artefacts and the semantic models that are required for changing

the behaviours of devices dynamically at runtime. In this section, we define how each of the artefacts

are used and fit in the overall architecture of the solution.

Figure 4-20 shows a high-level conceptual architecture of our proposed solution for extending the

behaviours of VO devices dynamically at runtime.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 54 of 110

Figure 4-20: Overview of architecture for extending VO behaviour at runtime.

In our solution, three human actors are involved at various stages of the process:

• The device manufacturer is the actor responsible for providing the descriptions of the VO

embedded devices using the W3C TM as JSON-LD document described in section 4.2. The

WoT Editor tool can be used to simplify the process.

• The rule designer is the actor providing a semantic description of the µCEP rules using a visual

interface according to the model described in section 4.2.1.

• The end consumer is the actor who interacts with the system for manipulating the behaviour of

deployed VO devices dynamically at runtime.

The models provided by the device manufacturers and rule designers are first stored in a knowledge

base. The Virtual Object Manager (VOM) is a software system role representing our toolchain for

supporting end consumers to manage their virtual object functions. It provides a management interface

to the stored descriptions and the rules as well as communicating with the WoT servient for retrieving

device properties or controlling the devices. We use the sayWoT servient in our solution, which receives

the TD of a device from VOM and automatically connects with the device using the communication

interfaces described within the TD as well as exposing the device properties over HTTP and WebSocket

protocol. In particular, it subscribes to the Things using their native southbound protocols and bridges

the communication to Web-based protocols as its northbound interface. In the case of this project, the

embedded devices support the MQTT protocol and publish their data to an MQTT broker.

By interacting with VOM API, the end consumer can then perform the following:

• Rule management,

• Identify compatible VO devices for a rule,

• Deploy /unload rules from the VO devices at runtime according to their properties,

• Enhance the capabilities of the devices with additional properties.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 55 of 110

Figure 4-21 provides a detailed overview of our proposed development process as a Business Process

Modelling Notation (BPMN) diagram, with the main actors represented in different lanes and artefacts

represented with the shape of a paper. The diagram shows the three main stages of the life cycle of our

solution. The upper part is already explained, and it is for creating the models by human roles, which is

fed to VOM. The third stage is our proposed toolchain and represents VOM for managing and extending

the behaviours of devices at runtime.

Figure 4-21: Overview of our solution as BPMN diagram

Below we describe each step involved in this process.

Thing Model and Rule Model validation - VOM can consume the provided device models and rules

as TMs. The process begins with the validation of the models using JSON schemas. JSON schemas

provide a structured approach to verify the syntactical correctness of these models and the adherence to

the W3C WoT TM specification.

Thing Model Composition - Once the models are validated, VOM implements the algorithms defined

within the W3C WoT specification for integrating a specific device with a rule. Each TM is used and

integrated into one combined TM. This is achieved using the links container with “rel”: “tm:submodel”

keyword specifying the child TMs. An instanceName is optional and assigns a name to the composed

TM sub-childs. The output is an artefact representing a composed TM.

Thing Description Generation - The TM to TD conversion process provides mechanisms for resolving

the references and extensions provided in the link container. The conversion process begins by resolving

the extensions and imports, applying additional metadata and binding information. To manage the

additional information, we used the JSON Merge-Path algorithm. Then any placeholders are replaced

using the placeholder map. The output is a TD which combines the initial capabilities of the device with

an additional property that describes the rule functionality. This TD is then passed to the WoT Servient

service to expose the device capabilities.

The sequence diagram represented in Figure 4-22, illustrates the detailed interaction between various

components of our solution. It demonstrates the process through an example request sent to VOM,

aiming to generate a TD for a particular device and rule.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 56 of 110

Figure 4-22: VO Descriptor Based on W3C WoT as Sequence Diagram

4.3 Interoperability and Relevant Solutions with OMA-LwM2M
The issue of semantic interoperability affects all the Information Technology IT systems and the way

for approaching it depends on the specific field of interest. The semantic interoperability in web services

focuses on the ontology organization of the web world, its rules, entities, and scenarios through the

creation of complex meta-data not always related to the real context. Existing solutions for IoT build

upon such concepts but depart from them to specifically support IoT peculiarities and, in particular, the

abstraction of a physical device. Some of the most significant approaches are Semantic Sensor Networks

(SSN) and TD, both recently proposed by World Wide Web Consortium (W3C) and extending the

Semantic Web standard Web Ontology Language (OWL). In this project, among the approaches

addressing semantic interoperability in IoT, we refer to the one proposed by the Open Mobile Alliance

(OMA) [15] with the Lightweight Machine to Machine (LwM2M) standard building upon several IoT

protocols and standards, like CoAP and IP for Smart Objects (IPSO) Alliance semantics. It encompasses

IPSO semantics specifically focused on M2M device management through the organization of device

resources. The most appropriate manner to represent IoT devices is by using semantic technologies [3].

Hence, the VO provides the semantic enrichment of data and functionalities provided by IoT device.

The result of the semantic description is the VO model which includes, for instance: objects’

characteristics, objects’ location, resources, services, and quality parameters provided by objects. The

VO model, intended as a software built for such a service, is independent from a specific device; it is

initialized at startup according to the properties of the physical homologous it is going to represent

thanks to a configuration file built on-purpose. The semantic description copes with heterogeneity and

provides interoperability in the IoT domain eliminating vertical silos. In addition, it is immensely

powerful in supporting search and discovery operations. Indeed, search and discovery mechanisms

allow to find the device that is most appropriate to perform a given application’s task.

In OMA-LwM2M provides Device Description File (DDF) of Objects by an eXtensible Markup

Language (XML) configuration file, which defines the object structure and its resource data. The data

producer, which hosts objects and resources, is defined as the OMA-LwM2M client, whereas the data

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 57 of 110

consumer is the OMA-LwM2M server. The client and the server just need to own the same configuration

file in order to serialize/de-serialize the information. The public registry28 provides objects defined by

OMA and standard objects produced by third-party organizations. Moreover, developers can define

customized objects following the technical specifications.

VO based on OMA-LwM2M presence targets the following crucial objectives: (i) overcoming platform

heterogeneity, (ii) ensuring interoperability, (iii) improving search and discovery, and (iv) reducing the

pressure on constrained devices. It provides the semantic description of the physical counterpart so to

ensure a common understanding of its features and capabilities among all potential consumer

applications. Specifically, it describes the embedded components by abstracting the specific hardware

and software platform implementation. Hence, the VO exposes the capabilities of the relevant physical

device to interested applications, managing transparent access to the intelligent heterogeneous resources.

Such a feature is particularly beneficial for sophisticated applications relying, for instance, on AI

inference capabilities. Indeed, the semantic description, in general and specifically of AI-empowered

IoT devices, facilitates search and discovery procedures in order to identify the components that are the

most appropriate, according to the demands of the requesting application (e.g., in terms of accuracy,

expected inference latency), to perform a given task. Moreover, in so doing, the conceived abstraction

of the capabilities of IoT devices makes the latter ones available to all interested applications in an

interoperable manner, by overcoming fragmentation. Moreover, it acts as a proxy between the physical

device and the consumer applications, it ensures interoperability by replying to the requesting

applications, on behalf of the physical device, using dedicated interfaces developed with more web-

oriented protocols like HTTP.

OMA-LwM2M is used in solutions proposed by FIWARE29, AVSystems30, Eclipse Foundation in (i)

Leshan project31 and Wakaama project32, ARM33. The VO implemented bases its interoperability on

backend logics which relies on interfaces and stored an information according to OMA-LwM2M

standard. Interfaces implemented allows Device Bootstrapping, Registration, Management and service

enablement, and Information Reporting using most of all LwM2M operations in uplink and downlink

like Read, Write, Observe, Execute, Delete. Data is organized following entities defined by LwM2M:

Device, Objects, Observables, Observers, Resources, and Values.

Thanks to the adoption of a semantic standard specifically developed for interoperability between

heterogeneous devices and their management, the developed VO allows self-configuration at startup

with respect to any physical device as long as the resources owned by it are described through OMA-

objects LwM2M according to standard. Consequently, any entity interacting with the VO will be able

to use the same semantic models to understand the device's meta-information.

4.4 Semantic Interoperability between WoT and NGSI-LD
To enable information exchange between WoT and NGSI-LD-based platforms, it is essential to provide

semantic interoperability. Therefore, an architecture that enables this information exchange is required

as well as semantic mapping between the two specifications. This section outlines the proposed

architecture and the mappings between WoT TD and NGSI-LD model, which serves as the foundation

of the semantic transformer that will be implemented in the future of this deliverable.

The NGSI-LD Meta-Model and TD serve as different purposes. WoT TD is tailored for describing

capabilities and interfaces of device instances, while NGSI-LD is used for sharing context information

about entities and their attributes. The following figure illustrates a conceptual diagram showing the

28 www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html

29 https://fiware-iotagent-lwm2m.readthedocs.io/en/latest/userGuide/index.html

30 https://www.avsystem.com/products/anjay/

31 https://www.eclipse.org/leshan/

32 https://github.com/eclipse/wakaama

33 https://github.com/PelionIoT/java-coap

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://fiware-iotagent-lwm2m.readthedocs.io/en/latest/userGuide/index.html
https://www.avsystem.com/products/anjay/
https://www.eclipse.org/leshan/
https://github.com/eclipse/wakaama
https://github.com/PelionIoT/java-coap

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 58 of 110

interoperability problem between two VO’s that are based on different standards. It considers the two

mapping variants that are required in the context of the NEPHELE project. In the first case (left part of

the diagram), Device 1 is based on a WoT virtual object, while Device 2 provides an NGSI-LD virtual

object. In this case, the composite VO can access the data if it is of type WoT. Similarly, on the right-

hand side of the diagram, the other way round is considered where an NGSI-LD composite VO is

required.

Figure 4-23: Semantic interoperability challenge between WoT and NGSI-LD composite virtual objects.

Figure 4-24 illustrates a potential solution for a bi-directional interworking between WoT and NGSI-

LD aimed to bridge semantic interoperability between NGSI-LD and the W3C WoT specification. On

the one hand, NGSI-LD Context Broker offers applications an NGSI-LD interface to publish, consume

and subscribe to information (e.g., Properties or Events) offered by Things or abstracted as NGSI-LD

Entities. On the other hand, WoT Servient, plays both the role of a client and a server in the WoT domain,

i.e., allowing applications to interact with Things (executing Actions) associated with NGSI-LD Entities,

and to consume the functionalities provided by Things, exposing them as/to NGSI-LD Entities.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 59 of 110

Figure 4-24: High-level overview of interworking between NGSI-LD and WoT

Providing a bi-directional semantic mapping between NGSI-LD and TD is challenging due to the

inclusion of specific information, such as security schemes and binding protocols, which cannot be

directly expressed in NGSI-LD. Consequently, when converting NGSI-LD models to TDs, some

mandatory fields might be omitted, rendering the resulting TDs invalid. To address this challenge, one

solution is to use TMs, as an intermediary for the mapping between NGSI-LD to TDs and vice-versa.

Unlike TDs, TMs do not require certain-specific information and have a more limited set of mandatory

fields. In particular, a JSON-LD @Context importing the semantic vocabularies and an @type

tm:ThingModel are the only mandatory fields.

Therefore, the TD<->NGSI-LD Mapper component requires a mapping between the three models: one

between NGSI-LD and TM and the other between TM and TD. Figure 4-25 shows a high-level

conceptual view of the transformation process, illustrating the role of TMs as an intermediary between

the two models. The TMs can be enriched with the following information: protocol bindings, metadata,

and placeholder map to facilitate the conversion to a valid TD.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 60 of 110

Figure 4-25: Conceptual overview of the semantic mapping between TDs and NGSI-LD models

Current status: For this sub-task, we have provided an initial semantic mapping between the TM and

NGSI-LD semantic models and vice-versa. Also, we have implemented the process of converting TMs

to TDs. Furthermore, the implementation for converting between an NGSI-LD model and TM and vice-

versa is ongoing. For this, we are using an open-source project Chimera [38], which is a framework that

offers components to define schema and semantic conversion pipelines based on standard Semantic Web

techniques.

4.4.1 Interoperability between VO Descriptor and models based on W3C TD and LwM2M
To evaluate the interoperability between a VO based on the VO Descriptor and the W3C TD, we aim to

create a VO with each of the provided models. In particular, there will be two MQTT endpoints one

offering temperature data and the other presence data, where both are acting as servers. Then, we will

create a composite application that acts as a consumer of the two modelled VOs, requiring the use of

sensor data provided by both devices. The composite application acts as the consumer of the data. It is

essential to acquire the sensor data from each of the VOs without any additional effort, and in a uniform

way using HTTP as the northbound protocol, regardless of the southbound interface used by each

individual VO.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 61 of 110

5 Autonomic Functionalities and Ad-hoc Clouds Management
5.1 Autonomic Networking Functionalities at IoT Level
Autonomous networking functions refer to the capacity of a network to self-configure, self-monitor, and

self-optimise without human intervention. These functions are relevant because they allow automatic

network adaptation when there are changes in topology, network traffic, and demand, ensuring the

availability of resources when required. Autonomous networks can detect and respond to improve

network failures in real time, improving response times and considering different optimization schemes

in decision-making. One optimization process that benefits from autonomous functions is allocating

network resources such as bandwidth and computing capacity based on real-time demand and

application requirements. As the network increases in complexity with the adoption of innovative

technologies such as SDN and cloud computing, autonomous functions help keep network management

manageable. As technology evolves, autonomous networking functions can adapt to new networking

paradigms and emerging technologies, ensuring that the network remains relevant and efficient in the

face of change.

Figure 5-26: Functionalities distribution along the compute continuum

In the IoT context, one of the challenges in autonomous networks is enabling agility, mobility, scalability,

and resilience between end devices and Edge/Cloud computing services through different

communication technologies. One of the components that facilitates the adoption of IoT solutions in the

computing continuum is the deployment of Edge computing close to the source of information since IoT

applications often require real-time or near-real-time data processing. Edge computing filters and

processes data locally, sending only relevant or aggregated information to the cloud, thereby reducing

the volume of data that needs to be transmitted to the cloud servers. The availability of edge servers

through mobile agents such as robots and drones allow flexible and quick-reaction solutions in dynamic

and unpredictable scenarios. Edge devices can continue operating even when the network connection is

lost, allowing critical functions to be still performed at the edge, ensuring the reliability of IoT

applications. Figure 5-26 shows the distribution of some functionalities through continuous computing,

where services such as real-data processing, data caching, and M2M communications are available

through edge servers. Thus, the data sent by IoT end devices through the VO or the (c)Vo will be

processed at the edge level, reducing latency, and using available resources better.

 End devices, such as sensors, robots, drones, and gateways must be accessible over the network to send

their data and for remote monitoring and management. Combining multiple wireless technologies such

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 62 of 110

as Wi-Fi, Bluetooth, Cellular (4G, 5G), and LoRa can significantly enhance network reliability and

robustness, particularly in critical applications like emergency services or industrial IoT, where latency,

bandwidth, and throughput requirements are crucial to maintaining operation. Multi-radio technologies

devices can switch between the technologies or use them concurrently, optimising for variables such as

data rate, coverage, and power consumption. For example, a device could use Wi-Fi for high-data-rate

transmissions but switch to LoRa for long-range, low-power communication. The integration of

technologies requires seamless handover algorithms to ensure smooth transitions between technologies,

preventing communication disruptions. In a previous work [83] a Network Interface Selection (NIS)

technique which is been adjusted to run over updated hardware to provide network robustness and

flexibility supporting several technologies. It consists of having multi-technology wireless sensor nodes

coupled with autonomous and adaptive algorithms. The latter would allow the nodes to dynamically

select the communication technology that fits best the environment, application, and data

requirements/constraints. In [84] we propose a lightweight Technique for Order of Preference by

Similarity to Ideal Solution (TOPSIS)-based method for NIS in WSN. The proposed technique shortens

computation time by 38% compared to classic TOPSIS with 82% similarity in terms of obtained

decision-making results. In the context of the post-disaster in a container port case study, the robots

exploring the region would be able to communicate using different technologies and deploy multi-

technology sensor nodes. This may allow the network devices to adapt to heterogeneous data rates (video,

image, time-series, audio, numerical, geospatial, etc.) and to the dynamic nature of the network

impacting coverage, communication distances, and throughput caused by the mobility of robots and the

dynamic deployment of sensor nodes.

Another benefit of multiple technologies integration is loading balancing for distributing network traffic

across multiple channels, reducing congestion, and improving performance. When needed, data

offloading strategies can optimise network usage by shifting data transfer to less congested or more

reliable technologies. Redundancy and fail-over mechanisms allow the network to maintain

functionality even if one technology fails or experiences high latency. The availability of technologies

with different data rates and coverage enables the network to support QoS management, ensuring that

critical data gets priority and sent over the most reliable and fastest available channel.

Finally, routing is a critical autonomous function in the cloud-to-edge-to-IoT continuum to ensure that

data and communication flow efficiently and securely across the computing continuum. In the IoT, data

can originate from various sources, including IoT devices, edge computing systems, or cloud services.

Effective routing ensures data packets reach the appropriate destination, whether it is another IoT device,

a local edge server, or a cloud service. Routing mechanisms must be optimised to minimise latency,

especially for real-time or time-sensitive applications using edge computing resources to process data

closer to the source. Effective routing enables seamless integration between edge and cloud resources,

which means routing decisions may adapt dynamically based on network conditions, device availability,

and data processing requirements. So far, the preliminary design of the routing protocol for supporting

an adaptive wireless sensor network in NEPHELE considers the connection of the sensor nodes through

VO or (c)VOs implemented in an IoT gateway. This configuration may facilitate the management of

constraint devices, such as temperature or humidity sensors. Different protocols may be used depending

on the context, considering that lightweight and low-power protocols such as MQTT or CoAP are most

common at the edge and in IoT devices.

The autonomic networking functionalities at the IoT level addressed in this section would support the

requirements FR_VOS_011, FR_VOS_012, FR_VOS_014, FR_VOS_015 in Table 2.1, and

NFR_VOS_01 in Table 2.2.

5.2 Networking Functionalities in the VOStack
The networking functionalities supported by the Virtual Object (VO) are accommodated within the

Physical Convergence layer of the VOStack. For instance, in the context of a smart port use case, a

network of IoT devices is deployed in the area, ranging from cameras to sensors monitoring storage

parameters (e.g., temperature, humidity) mounted on cargo containers. In the former case of IoT devices,

minimal latency and jitter are crucial metrics, whereas in the case of cargo container sensors, dynamic

routing is crucial, since cargo container stacking, a usual practice in large ports, can create signal

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 63 of 110

interference that may lead to low quality or even connectivity loss, in a rather dynamic mode as these

containers are being constantly relocated. A plethora of network-oriented functionalities are provided to

support uninterrupted connectivity with the devices, manage dynamic routing protocols, implement TSN

techniques, and also address mobility considerations.

The internal structure of the networking functionalities of the VO is depicted in Figure 5.2. These

functionalities are organised as two distinct elements, specifically the TSN Control plane and Reactive

Routing. Figure 5-27 illustrates that the internal networking components in the (c)VO may consist of

either components exclusive to the cVO (e.g., Clustering and Schedule Engine) or components that are

deployed either to VO and cVO (e.g., Network Model and Flow & Path Model).

By utilising TSN, we will ensure low latency and jitter in the communication between IoT devices and

their associated VOs. The deployment of these VOs can be conducted as containers on servers that are

positioned at the network's edge, or on network devices (i.e., IoT Gateways) at the far-edge of the

compute continuum. TSN will assign greater precedence to the transmission of data pertaining to high-

priority traffic communication. This communication may be related to tasks, such as the streaming of

videos captured by cameras, the transfer of data collected by sensors, and the dissemination of

instructions to control robotic arms. In contrast, other types of traffic, such as best-effort, will be

assigned with a lower level of priority. The Qbv-based TSN scheduler, specifically the TAPRIO qdisc,

is employed on IoT Gateways that are placed between IoT devices and (c)VOs.

Figure 5-27: Ad-hoc cloud and networking functionalities at the VO stack

On the other hand, Reactive Routing maintains network connectivity between wireless IoT nodes and

the IoT gateway. The former typically collect measurements from their environment and communicate

them periodically to a VO through the IoT gateway. There are also cases of deployments with both

sensors and actuators, where the central system does not have the role of measurement collection but is

instead notified of specific events or has a coordinating role with the nodes. The network paths between

the wireless sensor nodes and the IoT gateway (or the wireless sensor nodes) are occasionally multi-hop,

as their distance may extend beyond their individual network coverage. While traditional IoT network

protocols can be employed in such scenarios (e.g., RPL), our primary focus lies on Software-Defined

Wireless Sensor Networking (SD-WSN) approaches, which offer several distinct advantages. SD-WSN

enables dynamic routing adjustments based on a global view of the network, e.g., managing routing

changes due to mobility or signal interference. Furthermore, they provide logically centralised and

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 64 of 110

programmable routing control, allowing easy integration with the distributed control across the compute

continuum, fostering enhanced network intelligence and monitoring capabilities.

5.3 SDN-based Reactive Routing
SDN can support intelligent, programmable, and logically centralized control mechanisms that

dynamically adjust protocol functionalities to achieve improved performance and resource utilization,

addressing specific performance demands from IoT applications. They adopt the typical SDN

architecture, where the application plane is responsible to communicate application requirements, the

control plane to implement control mechanisms and the data plane to communicate the data.

However, wireless IoT deployments are often affected by radio signal issues, e.g., due to mobility or

interference, which can impair control communication. Furthermore, the latter may also be characterized

by increased overhead. To tackle the challenges of intermittent connectivity with the controller, control

message scalability, and mobility, several SD-WSN solutions have been proposed in the literature.

In our SDN controller architecture, the Compute Continuum Network manager implements high-level

network management functionalities (e.g., communicates application or flow requirements), the cVO

translates such requirements into a customized protocol configuration for a number of VOs and the latter

implement autonomous network control features, e.g., topology discovery or flow establishment. As

shown in Figure 5-27, the (c)VOs implement Reactive Routing through the following SDN control

facilities: (i) Topology Discovery, (ii) Network Model, (iii) Clustering, and (iv) Path Computation,

which we detail below. The implementation is modular enough to accommodate new mechanisms or

extend the existing ones, in a straightforward manner.

• Topology Discovery (TD). We currently support three topology discovery mechanisms, i.e.,

the Node’s Advertisement Flooding (TC-NA), the Node’s Neighbours Requests from the

Controller (TC-NR), as well as their hybrid combination. TC-NA is an epidemic algorithm

inspired by the topology discovery mechanism, employed by the state-of-the-art non-SDN IoT

routing protocol IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL). In TC-NA,

TD periodically communicates topology discovery control packets to its assigned border router,

triggering the broadcasting of ‘‘Neighbours’ Discovery’’ short-range beacon message from the

latter. Each receiving neighbour creates a response message that informs TD for any link

existence between the beacon node and itself. TC-NR is a centralized topology discovery

algorithm better aligned to SDN paradigm and dynamic topologies, i.e., collects topology

information through individual requests to the nodes from the TD. It is flexible enough to send

targeted topology requests on specific nodes or parts of the network without overloading the

rest of the topology. Lastly, we also utilize a hybrid combination of TC-NA/TC-NR for

heterogeneous topologies that consist of both mobile and fixed nodes, for maximum adaptation

to the dynamic characteristics of the network. TD is implemented in each VO and can have

bespoke configuration, depending on the deployed IoT application and the network

characteristics (e.g., level of dynamicity). The results of TD are also being forwarded to the

cVO, i.e., building up the global picture of all deployments.

• Network Model (NM). NM is responsible for topology maintenance and representation, i.e.,

the former ensures that the latter is up to date. Although IoT protocols such as RPL use

distributed mechanisms residing at the nodes (e.g., trickle timer), our topology maintenance is

fully coordinated from the VO, allowing an easy integration of context-sensitive solutions. For

example, different static topology refresh periods can be assigned to fixed (i.e., higher values)

compared to mobile nodes (i.e., lower values), regulating control overhead and achieving

efficient topology maintenance. The topology representation assigns frequently updated link

quality values to each edge of the graph, which can be selected from the administrator (e.g.,

Link Quality Indicator (LQI) or Received Signal Strength Indicator (RSSI)). NM resides both

at VOs, i.e., maintaining the topology graph of IoT nodes assigned to it, and the cVO (i.e.,

keeping track of all IoT nodes in the area).

• Path Computation (PC). PC specifies the end-to-end paths from source to destination nodes

(i.e., the latter could be the IoT gateway passing the data to the VO). These paths should be

aligned to the requirements of the IoT application, e.g., reduce delay, achieve reliable

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 65 of 110

communication, avoid loops or deadlocks, as well as construct alternative paths. PC determines

these paths that are being translated to flow rules in tuples of Destination and Next Hop node

addresses, being stored to the individual flow table of each node. In constrained and dynamic

IoT environments the flow rule expiration mechanisms are also important. In our case, the flow

rule expiration is being managed entirely by the PD, so it can be aligned to other important

network control decisions (e.g., topology discovery or maintenance parameters). We currently

support four types of flow establishment processes (i.e., being responsible to construct and

maintain the forwarding tables of the nodes), the Next-Hop Only (NHO), the Complete Path

(CP), the NHO-CP combination as well as the Proactive Flow Establishment (PFE) mechanisms.

NHO communicates to the nodes their own forwarding rule only, i.e., to reach the next node,

where the CP informs all the intermediate nodes participating in the routing path. An NHO-CP

combination is being employed in the case of topologies consisting of both mobile and fixed

nodes, where the fixed part employs CP and the mobile the NHO, allowing the maintenance of

the dynamic parts of the paths only. Lastly, PFE employs clustering to classify links based on

their connectivity quality history, which guides proactive flow establishment rules.

• Clustering. Clustering capabilities are being supported at the level of cVO or Compute

Continuum Network Manager for various reasons, including: (i) the appropriate association of

IoT nodes with particular VOs, which may also involve a network slicing activity at the IoT

network level; (ii) the association of bespoke protocol configuration per node type or

characteristic, e.g., mobile nodes may be configured by TC-NR topology discovery and refresh

their connectivity status more frequently; and (iii) implement proactive routing by classifying

links based on their connectivity quality history. At this point of investigation, we experimented

with the K-means algorithm for IoT mobility and a combination of partitional clustering with

similarity-based measures (i.e., based on dynamic time warping and k-medoids algorithm) to

implement proactive SDN-based flow establishment.

As a bottom line, each VO receives high-level configuration options and directives being decided from

the components above them (i.e., cVO or Compute Continuum Network Manager), configuring or

adapting its autonomic mechanisms, so they perform in alignment to the requirements of the IoT

application.

5.3.1 SDN Control Plane
We assume IoT nodes that support two radio interfaces: a long-range interface for the SDN control

channel and a short range for data communication, thus implementing out-of-band SDN control.

Although we assume one border router (BR) is located at the IoT Gateway, the approach allows for

multiple BRs, thus supporting elaborate partition of the IoT infrastructure.

The protocol assumes a control and a data network stack installed in each IoT node, with the former

catering for the long-range communication and SDN control messages and processes, while the latter

handling low power short range wireless communication and the forwarding layer of the SDN protocol.

The current implementation is based on a Contiki-OS fork to support the dual network stack, with

improved network core modules and Zolertia RE-mote devices, upgraded to enable activation of both

radio interfaces.

The southbound API manages control messages exchanged between the SDN Controller and the IoT

nodes in order to support the functionality described previously. More specifically, API messages fall

under the following categories: topology control and routing control and device control, as indicated in

Table 5..

The topology control messages concern the basic functionalities of topology discovery and maintenance.

Thus, this message class includes Border Router (BR) related messages (registration, solicitation, new

BR), and messages related to node discovery; for instance, new node response messages, or messages

related to the initiation of neighbourhood discovery.

The routing control message group contains messages related to the establishment of paths among node

devices and include all the forwarding rule management actions; for instance, adding forwarding rules

to nodes.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 66 of 110

Finally, the data delivery control message group includes messages related to IoT data delivery, i.e.,

add/remove subscription messages of nodes to data generated by the node, since the VO will be in charge

of controlling IoT data delivery, as well.

Table 5.1 SDN Southbound API

Message Group Message Type

Topology Control New Bridge Router

Solicitation Request

Bridge Registration

New Node Solicitation Request

New Node Response

Neighbour Request (TC-NA/TC-NR)

Neighbour Response

Update Protocol Parameters

Routing Control Missing Forwarding Rule

Add Forwarding Rule

Remove Forwarding Rule

Replace Forwarding Rule

Remove All forwarding Rules

Data Delivery Control Add Subscription

Remove Subscription

The SDN-based reactive routing codebase for the VOStack is available here34.

5.4 Time-Sensitive Networking
5.4.1 TSN Control Plane
Regarding the control plane, we use a hybrid TSN implementation, as described in the IEEE 802.1Qcc

standard, in order to automate the TAPRIO configuration process. More specifically, we implemented

a prototype Central Network Controller (CNC) that has the capability to compute TSN 802.1Qbv

schedules and populate these schedules into TSN-enabled switch data paths. The CNC consists of three

internal modules: (i) Flow & Path Model, (ii) Schedule Engine, and (iii) GCL Controller. Below we

briefly describe these modules:

• Flow & Path Model. The Path and Flow Model module has two main functionalities. The first

one is the categorization of incoming flows into distinct traffic classes, such as high-priority and

best-effort. This is achieved based on some predefined rules that can match applications’

network requirements (e.g., latency less than 1 ms) to traffic classes and determine whether the

request should be categorized as critical or non-critical. The second functionality of this module

is the path configuration and by path, we define the fixed network between the IoT Gateway

and the VO. This path will be used as an input to the Schedule Engine module.

• Schedule Engine. The Schedule Engine module is implemented as a cVO component and is

responsible for implementing a scheduling model to determine a scheduling pattern for the

incoming flows in order to satisfy their latency requirements. In this implementation, the

scheduling model is based on constraint programming, since the latter offers versatility in

problem modelling, and efficient heuristic search in combination with powerful constraint

propagation techniques. It should be mentioned that the TSN scheduling problem is classified

as an NP-complete problem and various strategies have been proposed to address this problem

in the literature, including Satisfiability Modulo Theories (SMT), Constraint Programming,

Heuristics, and Genetic Algorithms.

• GCL Controller. The GCL Controller module receives the output of the Schedule Engine as

its input and is responsible for configuring time intervals on the Gate Control List, and

34 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-sdn

https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-sdn

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 67 of 110

determining the duration over which each queue is open for transmission. The GCL Controller

uses in order to send the GCL configuration to the IoT Gateway.

Furthermore, the TSN Control Plane incorporates two application programming interfaces (APIs). The

proposed system includes a Northbound API, implemented using a well-defined JSON schema, which

is capable of processing requests related to application configuration and requirements from the

Compute Continuum Network Manager. Additionally, a technology-specific Southbound API, utilising

NETCONF, is responsible for transmitting the GCL configuration to the IoT Gateway through the use

of Remote Procedure Calls (RPC).

5.4.2 TSN Schedule Engine
As mentioned, the TSN scheduling problem is considered a NP-complete problem and several

approaches have been proposed towards its solution, such as Satisfiability Modulo Theories (SMT) [85],

Constraint Programming [86], Heuristics [87], and Genetic Algorithms [88]. A recent systematic review

can be found in [89]. In terms of TSN schedule computation, the main objective is to determine a feasible

scheduling pattern for incoming flows with respect to their specified requirements (e.g., latency, jitter),

based on a defined model and constraints. The scheduling model is built on constraint programming,

harvesting on its flexibility in terms of problem modelling and exploiting the power of efficient general

heuristic search combined with robust constraint propagation techniques for domain reduction, in the

form of global constraints.

1. Problem Formulation

We follow a similar approach to modelling the TSN scheduling problem in constraint programming, as

those in [85], [86], [90]. Thus, we assume the usual graph representation found in previous work, i.e.,

we consider a graph 𝐺 = (𝑉, 𝐸), where vertices (nodes 𝑛𝑖) are either switches or end-points, whereas

edges are links (𝑙𝑖𝑗 ∈ 𝐸) connecting the former, i.e. link 𝑙𝑖𝑗 connects nodes i and j respectively. Each

link 𝑙𝑖𝑗 is characterized by its propagation delay 𝑙𝑑𝑖𝑗, its speed 𝑠𝑝𝑖𝑗, and a number of queues 𝑄𝑖𝑗 that

are at most 8 according to IEEE 802.1 Qbv. Switches also have a processing (or fabric) delay 𝑠𝑑𝑖 which

is constant.
In the current setting, we consider a set of periodic flows F of single packets (frames), i.e., the payload

of each flow can fit into a single Ethernet frame, where each flow 𝑓𝑘 ∈ 𝐹, has a deadline 𝑑𝑓𝑘, a packet

size 𝑝𝑘, a period 𝑇𝑘 that determines the frequency of the transmission, and is associated with a valid

path 𝑃𝑘, that consists of an ordered list of links [𝑙𝑡𝑖, 𝑙𝑖𝑗, . . . 𝑙𝑛𝑙] from the transmitting end-point 𝑛𝑡, i.e.,

the talker, to the receiving end-point 𝑛𝑙, i.e., the listener of the flow.

The problem can be considered as a classic job-shop scheduling problem, where each flow transmission

is considered as a task, consisting of as many transmission operations as the links it traverses along the

path to the listener, with a number of additional constraints that will be discussed below. Thus, a flow

𝑓𝑘 on a path 𝑃𝑘 of length N can be modelled as a set of operations 1..N, each having a start time (offset)

relative to the start of the schedule (time point 0), i.e., the set𝑆𝑘1,𝑖,𝑗, 𝑆
𝑘
2,𝑗,𝑘 , . . . , 𝑆

𝑘
𝑁,𝑘,𝑙} where each

variable 𝑆𝑘𝑥,𝑖,𝑗 ∨ 𝑥 ∈ 1. . 𝑁 represents the start time of the transmission of the packet of flow k on the

link 𝑙𝑖𝑗. We define this set as the primary flow. Additionally, for each flow 𝑓𝑘 we define a queue 𝑄𝑘,

which is considered to be the same for all links of the flow.

Scheduling of flows that have different periods occurs in a time domain defined by the hyper period

[91], where the latter is defined as least common multiple of all flow periods, i.e., 𝐻𝑃 =
𝑙𝑐𝑚(𝑇𝑘 ∨ 𝑓𝑘 ∈ 𝐹). Flows may occur multiple times in a hyperperiod and in the later case, each flow 𝑓𝑘

that occurs 𝑀 = 𝐻𝑃 𝑇𝑖⁄ times in the hyperperiod, consists of N*M start times, as indicated in the

following equation:

𝑓𝑘 = {𝑆𝑘1,𝑖,𝑗, . . . , 𝑆
𝑘
𝑁,𝑘,𝑙 , 𝑆

𝑘
𝑁+1,𝑖,𝑗, . . . 𝑆

𝑘
2∗𝑁,𝑘,𝑙 , . . . 𝑆

𝑘
𝑁(𝑀−1),𝑖,𝑗, . . . , 𝑆

𝑘
𝑁∗𝑀,𝑘,𝑙}

We define sub flows 𝑆𝑘𝑥,𝑖,𝑗 ∨ 𝑥 > 𝑁 as secondary flows; we make this distinction since primary flow

start time variables and those of the secondary flow, participate in different constraints in the model. In

the CP model, the decision variables are the start times in both primary and secondary flows and the

flow's queue, i.e., {𝑆𝑘𝑜,𝑖,𝑗 ∈ [0. . 𝐻𝑃] ∨ 𝑜 ∈ 1. . 𝑁 ∗ 𝑀,𝑄𝑘 ∈ 1. .7 > . Since queue 0 is reserved for

unscheduled best-effort traffic, the domain of 𝑄𝑘 is restricted to the range [1.7]. The requirement for

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 68 of 110

zero jitter, enforces that decision variables in the primary and secondary flows are linked by the

following constraint (zero jitter):

∀𝑛 ∈ 1. . 𝑁, ∀𝑚 ∈ 2. .𝑀, ∀𝑙𝑖𝑗 ∈ 𝑃𝑘 , 𝑆
𝑘
𝑛,𝑖,𝑗 + (𝑚 − 1) ∗ 𝑇𝑘 = 𝑆𝑘𝑁∗(𝑚−1)+𝑛,𝑖,𝑗

The first scheduling constraint imposes an ordering among the start times of each operation in a task,

ensuring that a packet on link 𝑙𝑖𝑗 has arrived on node 𝑛𝑗, before being transmitted over the link 𝑙𝑗𝑙. There

is no need to define the constraint for secondary flows, due to the equality constraints of zero jitter

constraint mentioned above, which ensures that the correct time distance is maintained among

operations of each subflow. Thus, enforcement of the constraint occurs only on decision variables of the

primary flow and is depicted below:

∀𝑓𝑘 ∈ 𝐹, ∀𝑜 ∈ 1. . (𝑁 − 1), 𝑆𝑘𝑜.𝑖.𝑗 + 𝑠𝑑𝑗 + 𝑙𝑑𝑖𝑗 + ⌈
𝑝𝑘
𝑠𝑝𝑖𝑗

⌉ ≤ 𝑆𝑘𝑜+1,𝑗,𝑙

Equation above considers the propagation delay 𝑙𝑑𝑖𝑗 of the link, the transmission delay computed as the

ceiling of the packet size over the speed of the link ⌈
𝑝𝑘

𝑠𝑝𝑖𝑗
⌉, and the switch delay 𝑠𝑑𝑗 of the receiving node.

Given that flows have a deadline, the flow's packet must arrive to the listener node 𝑛𝑙 over a link 𝑙𝑚𝑙

before the deadline 𝑑𝑓𝑘:

∀𝑓𝑘 ∈ 𝐹, 𝑆𝑘𝑁,𝑙,𝑚 + 𝑙𝑑𝑚𝑙 + ⌈
𝑝𝑘
𝑠𝑝𝑚𝑙

⌉ ≤ 𝑑𝑓𝑘

Once more, the deadline constraint is imposed only on the primary flow variables, and equality

constraints of the zero-jitter constraint ensure that is enforced for all flows in the hyper period.

Each egress link transmits a single packet at each time point, thus, no two transmissions on the same

link may overlap, yielding the constraint:

∀𝑙𝑖𝑗 ∈ 𝐸, 𝑓𝑘,𝑓𝑟 ∈ 𝐹 ∨ 𝑘 < 𝑟, ∀𝑆𝑘𝑥,𝑖,𝑗 ∈ 𝑓𝑘,∀𝑆
𝑟
𝑦,𝑖,𝑗 ∈ 𝑓𝑟,

𝑆𝑘𝑥,𝑖,𝑗 + 𝑙𝑑𝑖𝑗 + ⌈
𝑝𝑘
𝑠𝑝𝑖𝑗

⌉ ≤ 𝑆𝑟𝑦,𝑖,𝑗 ∨ 𝑆
𝑟
𝑦,𝑖,𝑗 + 𝑙𝑑𝑖𝑗 + ⌈

𝑝𝑟
𝑠𝑝𝑖𝑗

⌉ ≤ 𝑆𝑘𝑥,𝑖,𝑗

The previous constraint is commonly found in scheduling problems and is managed by the global

constraint disjunctive [92], with a plethora of dedicated algorithms to efficiently tackle it. Note this

constraint is enforced in all decision variables of both primary and secondary flows.

Finally, since a frame is fully received before being copied to its destination queue and frames are

transmitted according to their reception order, it must be ensured that packets addressed to the same

egress link, arrive in the correct order when placed in the same egress queue or are forced to be placed

in different queues. The latter is referred to as the frame isolation constraint, and is modelled by the

disjunction depicted below:

∀𝑙𝑖𝑗 ∈ 𝐸, 𝑓𝑘,𝑓𝑟 ∈ 𝐹 ∨ 𝑘 < 𝑟, ∀𝑆𝑘𝑥,𝑖,𝑗 ∈ 𝑓𝑘,∀𝑆
𝑟
𝑦,𝑖,𝑗 ∈ 𝑓𝑟,

∨ 𝑄𝑘 ≠ 𝑄𝑟

where 𝐴𝑘𝑥,𝑖 is the arrival time of the packet of flow 𝑓𝑘 at node 𝑛𝑖, and is given by:

𝐴𝑘𝑥,𝑖 = 𝑆𝑘
𝑥−1,𝑎,𝑖

+ 𝑙𝑑𝑎𝑖 + ⌈
𝑝𝑘
𝑠𝑝𝑎𝑖

⌉

The definition of 𝐴𝑟𝑦,𝑖 is similar. The constraint ensures that the reception of one of the frames is

completed before the other, and thus, maintains the order of placing the frames in the queue. This

constraint can be easily implemented using reified constraints, offered in most CP solvers.

The current model’s implementation relies on the ECLiPSe Constraint Logic Programming system [93];

the latter supports all constraints required by the model, offers a variety of search strategies and

variable/value ordering general heuristics for finding solutions.

5.4.2.1 Evaluation

A preliminary validation of the TSN schedule engine is conducted on the OMNeT++ v6.0.1 simulation

platform, using the INET 4.5.0 framework. To this end, we utilize the topology illustrated in Figure 5-28.

This topology includes paths between IoT nodes to VOs, as well as additional communicating nodes

responsible for cross traffic. The traffic is forwarded via TSN switches that utilize GCLs at their egress

ports in order to manage traffic prioritization. The IoT nodes are responsible for generating time-

sensitive traffic, which is treated as high-priority (also termed as scheduled traffic). The period of all

these flows is set to 800 μs, which is also considered as the deadline for each flow, thus, ensuring that

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 69 of 110

all packets are delivered to the VO within a cycle. Furthermore, nodes tagged as BE serve the purpose

of traffic interference, by injecting Best-Effort (BE) traffic towards sink nodes. BE nodes generate traffic

at intervals of 10 μs.

Figure 5-28: Evaluation topology

We utilize the aforementioned TSN schedule model to derive the GCL schedules and conduct a set of

simulations in order to assess the efficiency of the computed schedules for high-priority traffic. The

search is based on a value ordering heuristic, selecting the minimum value for the start time from each

domain, thus, reporting a valid solution, which is not optimized according to some metric. This helps

maintain a negligible runtime for schedule computation, (i.e., approximately 4 ms). As a baseline for

evaluations, we rely on static schedules which have been employed by numerous studies for traffic

prioritization [94], [95]. In such a static scheduling, the high-priority queue is associated with an 800 μs

scheduling interval, whereas the best-effort queue is scheduled at 200 μs.

Figure 5-29 and Figure 5-30 illustrate the latency and jitter experienced by the scheduled traffic. The

proposed scheduler (indicated as “Dynamic_Scheduled” in these plots) outperforms the static scheduler

both in terms of latency and jitter. More precisely, our schedule model yields a median delay of 0.19 ms.

The small size of the interquartile range indicates that a considerable number of latency values are tightly

positioned around the median, which indicates a much lower degree of deviation from the median. This

combined with the lack of outliers corroborates the superiority of the proposed scheduler, especially in

terms of latency bounds which are more significant (than mean values) in the context of TSN. For

instance, the latency with the proposed scheduler remains bounded below 0.25 ms (Figure 5-30), as

opposed to the static schedules that may lead to delays in excess of 0.4 ms.

Similar observations can be drawn with respect to the jitter that the scheduled traffic experiences (Figure

5-30). Scheduling traffic with static intervals yields an increase by 80 in the median value of jitter

(compared to our scheduler); however, the margin between the two scheduling techniques is even larger

in terms of jitter bounds. While the deviation around the mean is barely perceptible for the proposed

scheduler, jitter can exceed 0.1 ms with the static schedules.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 70 of 110

Figure 5-29: Latency of scheduled traffic

Figure 5-30: Jitter of scheduled traffic.

5.4.2.2 TSN Data Plane

For TSN data plane activation, we use TAPRIO (Time-Aware Priority Packet Scheduler) - a powerful

queuing discipline available in the Linux kernel's traffic control (tc) tool. TAPRIO plays a crucial role

in simulating the behaviour of IEEE 802.1Qbv, which is a standard for enhancing time-aware scheduling

in Ethernet networks. By integrating TAPRIO, we allow the configuration of a series of gate states, each

one responsible for enabling outgoing traffic for specific subsets of traffic classes based on the concept

of time slices.

To ensure proper packet classification into the appropriate traffic class, TAPRIO uses the priority field

of the socket buffer (skb) employed by the network stack of the Linux Kernel. This enables TAPRIO to

effectively assign time-sensitive flows to their respective priority queues. In our implementation, we

map traffic classes to queues by modifying the DSCP (Differentiated Services Code Point) field of the

packet header. As such, we prioritise traffic based on specific service requirements and deliver the

desired QoS to diverse types of data streams. To achieve the modification of the skb priority field before

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 71 of 110

packets are directed to the queuing discipline, we employ the use of iptables, a versatile packet filter

tool operating at the IP layer. By incorporating the relevant classifier rules into iptables, we effectively

manipulate the skb priority field with precision. As such, we establish the appropriate priority for the

skb (socket buffer) as packets traverse the network. Through this comprehensive setup, we effectively

integrate TAPRIO into the data plane of our IoT Gateway, enabling the timely delivery of data between

IoT devices and (c)VOs.

More precisely, the workflow for packet handling and classification by TAPRIO is the following: (i) the

incoming packet, which is tagged with a DSCP value of 0x40 indicating high priority, arrives at the

ingress interface; (ii) the first step of classification involves using IPTables to set the skb priority field

to 0x40; (iii) subsequently, the TAPRIO queuing discipline assigns the incoming packet to high-priority

queues. The aforementioned steps are depicted in Figure 5-31.

Figure 5-31: Packet handling workflow in TAPRIO

5.4.2.3 Interactions between TSN Control Plane and Data Plane

Leveraging on IEEE 802.1Qcc, we utilize a hybrid TSN implementation in order to automate the process

of the TAPRIO configuration on the egress interface of the IoT gateway. In principle, CNC

communicates with the TSN bridges via remote network management protocols such as NETCONF,

RESTCONF and IETF YANG data models. In the case of a client/server-based network management

protocol architecture, the TSN bridge acts as a management server, whereas CNC acts as a management

client.

In the TSN architectural framework illustrated in Figure 5-32, a YANG Parser, deployed at the userspace

of the TSN bridge, parses the YANG-TSN model to a set of actions that can be applied directly to the

queuing disc layer of the Linux kernel. The CNC establishes communication through the NETCONF

plugin by utilizing the YANG data model. The NETCONF plugin functions as a management client and

establishes communication with the NETCONF server that is operational on each TSN bridge, such as

an IoT Gateway. Following the completion of their computational process, the TSN schedules are

transmitted to the IoT gateway.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 72 of 110

Figure 5-32: Interaction between the TSN data and control plane

An illustrative sample of this model appears in Figure 5-33. In particular, this figure illustrates the TSN-

TAPRIO module for transmitting the TAPRIO configuration to the relevant network interface via an

RPC. This module allows for the definition of the interface through which the TAPRIO configuration

will be activated, as well as the specification of the number of traffic classes (referred to as num-tc) and

the number of hardware queues to which the traffic classes will be mapped. Furthermore, the Gate

Control List schedule can be defined using the sched-entries parameter, which allows for the

configuration of time intervals. These intervals determine the length for which each scheduled entry will

be active before transitioning to the next entry.

The TSN control plane codebase for the VOStack is available here35.

35 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-tsn

https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-tsn

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 73 of 110

Figure 5-33: Example of TSN-TAPRIO module

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 74 of 110

6 Security Functionality
6.1 Decentralized Identifiers
Decentralized Identifiers (DIDs) [96] are unique identifiers that enable verifiable, self-sovereign digital

identity. They are crucial components in a decentralized identity system, allowing individuals, entities,

and things to have a persistent, globally unique identifier independent of any centralized authority. DIDs

are foundational in enabling secure and private interactions in digital environments.

As shown in Figure 6-34, DIDs are divided in 3 parts:

• The URI scheme identifier: this is the “did:” at the beginning of the identifier that serves as a

Uniform Resource Identifier (URI) scheme that indicates it is a Decentralized Identifier.

• The identifier for the DID method: this part specifies the method used to create, resolve, and

manage the DID. It indicates the underlying decentralized network or system. Each method may

have its own rules and processes for creating and managing DIDs.

• The DID method-specific identifier: This is a unique identifier assigned to a particular entity

or individual within the chosen DID method. The format and length of the specific identifier

may vary depending on the method. It uniquely identifies the subject of the DID within the

chosen decentralized network or system.

Figure 6-34: Example of a Decentralized Identifier (DID)

As depicted in Figure 6-35, DIDs resolve to DID documents, which are JSON-LD [97] representations

associated with DIDs. They contain key information about the subject of the DID, including public keys,

authentication methods, service endpoints, and additional metadata. DID Documents serve as a crucial

component for verifying and interacting with decentralized identities within a given DID method. They

enable secure and standardized management of identity-related information.

Figure 6-35: Overview of DID architecture.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 75 of 110

6.2 Verifiable Credentials and Verifiable Presentations

Verifiable Credentials (VCs) [98] provides a standard way to express credentials on the Web in a way

that is cryptographically secure, privacy respecting, and machine verifiable.

A VC can represent all of the same information that a physical credential represents. The addition of

technologies, such as digital signatures, makes VCs more tamper-evident and more trustworthy than

their physician counterparts.

Holders of VCs can generate Verifiable Presentations (VPs), which are digital artefacts that encapsulate

VCs and information about a subject, such as an individual/entity or devices. They are often used in the

context of decentralized identity systems and are cryptographically signed, allowing third parties to

verify the authenticity of the presented information without needing to contact the original issuer. VPs

enhance privacy and enable individuals to selectively disclose specific details about themselves while

maintaining control over their personal data. They play a key role in the secure exchange and verification

of credentials within decentralized identity ecosystems. Both VCs and VPs can be transmitted rapidly.

Figure 6-36: Verifiable Credential flows

6.3 Security Architecture
For the Southbound interface (VO-to-Device), security measures will be robustly implemented through

the utilization of MQTT with TLS (Transport Layer Security) [99] and CoAP with OSCORE [100].

These protocols ensure a secure and encrypted communication channel between devices and systems.

MQTT with TLS guarantees data integrity and confidentiality, while CoAP with OSCORE provides a

secure framework for constrained environments, ensuring the protection of data exchanged over the

network. This dual approach enhances the overall security posture, addressing the specific needs of

diverse communication protocols in the southbound interface.

For the Northbound interface (VO-to-cVO, VO-to-App and cVO-to-App), the architecture is based on

the utilization of Holder, Verifier, Issuer and PEP-Proxy components. These components are

deployed within Kubernetes on every element (Applications, cVOs, and VOs). Additionally, there is the

option of deploying them on IoT Devices if the limitations of the devices allow it.

The Application will only deploy the Holder component because the interaction flow is always VO-to-

App, i.e., the App will never receive requests from VOs, so the App will never have to verify credentials

to produce an Access Token. VOs and cVOs will deploy all 3 components because they will have to

both Verify and Authenticate depending on the type of interaction that is taking place (Direct VO-to-

VO, VO-to-IoT-Device(s), or VO-to-App). The IoT Devices, if the conditions are met, will deploy just

the Holder component for the same reason as the Application does, but in this case the interaction is

VO-to-IoT-Device(s).

The Holder is the component that will function as a wallet. The Holder functionality is to obtain the

SIOP request, select the Verifiable Credentials indicated in the SIOP Request [101], create the VP and

send it to the correspondent API (also indicated in the SIOP Request) to be verified and to obtain the

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 76 of 110

Access Token (OIDC4VP Protocol) [102]. As it acts as a wallet, the Holder also stores the VCs and the

DIDs.

The Verifier is the component that will generate the SIOP Request and then verify the credentials to

generate the Access Token. The SIOP Request is a request that is sent by the relying party (in this case,

the Verifier) to an individual’s self-issued OpendID [103] Provider asking for an OpenID Token. The

request includes information about the relying party and the specific claims or information it requires

from the Holder. The OpenID Token is composed of 2 parts: the ID Token and the Verifiable

Presentation Token (VP Token), and both are generated by the Holder. The Access Token is a Bearer

Token in JSON Web Token (JWT) [104] format and is signed with the private key of the device where

the Verifier involved is deployed. This access token includes information about the authenticated entity

or the context of the token such as the issuer, the subject, expiration time, etc.

The Issuer is the component that will function as the trusted entity for the generation of VCs. All

Apps/(c)VOs that want to obtain Verifiable Credentials will need to execute the OpenID Connect for

Credential Issuance (OIDC4CI) protocol [105] with the Issuer. Unlike the other components, the Issuer

is not deployed in every App/(c)VO/Device. The Issuer will be deployed as an independent component.

The PEP-Proxy component acts as an entry point for the (c)VOs. This component will offer the same

APIs (including Verifier/Holder APIs) as those offered by the (c)VOs on which the proxy is deployed,

so the PEP-Proxy just redirects the request to the corresponding component, thus ensuring that the

(c)VOs and all of its components are not exposed and can only be accessed through the PEP-Proxy. This

component is also responsible for verifying the Access Token when receiving a request to a resource

with the Access Token included in the ‘x-auth-token’ header.

All these addresses the security-related functional requirements FR_VOS_009 from Table 2.1 and non-

functional requirements NFR_VOS_02 and NFR_VOS_06 from Table 2.2.

Figure 6-37: Security components deployed for an interaction cVO-to-VO.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 77 of 110

7 IoT Device Virtualized and Supportive Functions
This task aims to develop the set of functions that will be supported by the “IoT Device Virtualized

Functions” and the “Generic/Supportive Functions” layer of VOStack. The IoT Device Virtualized

Functions Layer refers to functions that tackle part of the business logic of an application, while the

Generic/Supportive Functions Layer considers a set of supportive functions that can be horizontally

applied over all the instantiated VOs for an application. At the Generic/Supportive Functions Layer, a

service mesh approach is going to be followed, where development of generic supportive functions (e.g.,

elasticity management, security, authentication, telemetry) is going to take place. Secure communication

and authorization are going to be supported, as well as enforcement of authentication policies. Telemetry

functions as well as elasticity management actions for IoT application components will also be made

available. NEPHELE follows a microservices-based approach with cloud-native applications being

represented as an application graph made of independently deployable application components. This

guarantees modularity, openness, and interoperability with orchestration platforms in general and with

the NEPHELE Meta-orchestrator in particular. The deployable components are application

functionalities, i.e., supportive functions and IoT device virtualized functions, which can be deployed at

the cloud or the edge part of the continuum. The VOStack offers them as generic functionalities that can

be tailored to the specific application needs. Indeed, the components in the application graph are

accompanied by a sidecar as per the service-mesh approach to be activated on demand. The VO

representing an IoT device will offer the IoT Virtualized functions that it supports to the application,

whereas other supportive functions can be activated as part of the application graph. The NEPHELE

hyper-distributed applications (HDA) repository, will host a set of application graphs, application

components, virtualized IoT functions and VOs to application developers. The NEPHELE meta-

orchestrator is then responsible for activating the appropriate orchestration modules to efficiently

manage the deployment of the application components across the continuum. The interplay among VOs

and IoT devices will allow for exploitation functions even at the device level in a flexible and

opportunistic fashion.

Drivers for the definition of the IoT virtualized functions and the supportive functions are the NEPHELE

use cases. These cover a large spectrum of IoT devices, applications and services and will require distinct

functions to be supported. Some of the IoT devices and functionalities are specific for a use case,

whereas others show commonalities or even equalities over multiple use cases. For instance, ground

robots and an ultrasound probe are specific IoT devices for a post-disaster use case and e-Health use

case respectively (NEPHELE use case 1 and 4), whereas cameras and sensors see adoption in multiple

of the NEPHELE use cases. Similarly, robot navigation and medical report production are supportive

functions that are specific for NEPHELE use case 1 and use case 4 respectively, whereas object detection

and data aggregation are adopted in multiple use cases. We will next elaborate on the IoT Virtualized

Functions and Supportive functions identified by the NEPHELE use cases as representative examples.

For a complete and detailed overview on the use case definition and requirements please refer to

NEPHELE D2.1.

In Use case 1, a post-disaster scenario is envisaged, and the hyper-distributed application aims at

enhancing the situational awareness for first responders. To reach this goal, sensing data collected from

the IoT devices will be used for instance to enable, among others, AI-powered decision-making, path

planning, and precise 2D/3D representations of emergency scenarios in real-time[1]. Several IoT device

virtualized functions and supportive functions are identified for the post disaster use case where the

following service will be enabled:

• Fleet management software component to enable and control multiple robots simultaneously.

• Navigation and mapping software component to enable mobile robots to navigate autonomously

the area and map it using multiple robots and map merging functionalities.

• Software component for location and identification of victims in unknown areas, and assessment

of victims’ injuries.

• Risk detection component to identify areas with dangerous and risky elements using sensor data

analysis and computer vision.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 78 of 110

• Pick and place software components for a mobile robot to deploy sensor devices and take liquid

samples.

• Interactive GUI component for the presentation tier including a mission control to list tasks

based on data collected from the IoT devices.

Some Generic/Supportive functions that can be horizontally applied over all the instantiated VOs for an

application will be:

• Security, authentication specifically described in section 6.

• Telemetry and monitoring components to verify the status of network connectivity, sensor,

robots’ status, and trigger actions in case of low energy or disconnections.

• Storage and replay software component for historical analysis of robot actions and performed

tasks.

• Data aggregation.

• Elasticity management for VO deployment in a Kubernetes Cluster using CRDs and rules for

horizontal/vertical scaling.

• Alarms.

• Image processing.

• Video streaming selection.

In Use case 2, containers routing optimization in a smart (sea) port is explored and the hyper-distributed

application aims at automating the containers routing process. For this purpose, data collected from IoT

sensors installed in port trucks/forklifts, video streams from cameras installed within the port area, and

data collected from Port Information System will, supported by AI/ML powered image processing and

decision-making, allow for optimizing containers routing process in real time. Several IoT device

virtualized functions and supportive functions are identified to be utilized in the use case:

• supporting multiple types of sensors (data format, semantics, single vs. multiple sensors

connected on single bus)

• manipulating sensors properties

• IoT device monitoring

• (AI/ML) image detection/processing (described in Image processing section of this chapter)

o detecting obstacles (e.g., traffic jam)

o detecting free parking spaces (load/unload area)

• simulation tools for ML algorithms training

• interfaces for collecting data from Port Information System

• container routing optimization

• dispatch decision making.

7.1 Telemetry
Leveraging on the Observe primitive defined by OMA-LwM2M, VO and cVO implement telemetry

mechanisms in order to automatically notify resource’s status change to the data consumer, the Observer.

The VO receives, on the northbound interfaces, the OBSERVE request from an application to observe

a Resource or Object instance. When an entity is under observation, the observer is registered in a list

dedicated to entity observation, Resource, or Instance. The VO uses this list to notify the application of

the new value from the observed entity. In this way, a new observer for the same entity will be added to

the list without the need of further operations.
Data Storage

VO enables different type of data storage according to the nature of data. The datastore can be both

internal, through the implementation of lightweight solutions (i.e., SQLite) for the historicization of data

less linked to frequent temporal updating, and external, through the implementation of more high-

performance solutions suitable for the processing of large quantities of time-related data (timeseries)

with high update frequency (i.e., InfluxDB). Such scalable and stateless configuration, with respect the

VO status, is a key feature for seamless orchestration and elasticity management of the VO microservice

within the NEPHELE VOStack.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 79 of 110

7.2 Data Aggregation
Through the NorthBound, the VO provides the interfaces for directly accessing the history of the data

recorded in the chosen period. These interfaces, exposed on the api/data path, will allow:

• data extraction by type of resource, instance/object or object.

• data extraction by value (applicable only on resource).

• time frame definition for data extraction.

7.3 Elasticity Management
Elasticity is the ability to grow or shrink infrastructure resources dynamically as needed to adapt to

workload changes in an autonomic manner, maximizing the use of resources. A VO can be dynamically

created and destructed, may consist of information, services and is a dynamic object since it has to

represent dynamically the changes from real world objects. Cognitive mechanisms at the VO level

enable self-management and self-configuration of real objects, in fact, the introduction of cognitive

mechanisms could lead to know how real-world objects react to specific situations and in this way the

operations for controlling objects become more efficient. The VO level would also involve mechanisms

that provide awareness about the physical objects’ presence and relevance, a complete knowledge about

physical objects is needed to keep the association between the VOs and the real objects. This knowledge

is used to have a constant handling of physical devices without caring about if there’s physical object

mobility or failure of some of the links to them. In other words, the VO level comprises mechanisms for

monitoring the status/capabilities of physical objects and controlling the various links with physical

objects to make sure that the VOs are resilient, even when the associated physical objects might be

temporarily unavailable [106].

7.4 Alarms
Through the use of semantic models like OMA-LwM2M and W3C-WoT, the VO exposes thresholds

and related alarm resources. This allows, for instance, consumers to monitor the resource trend and,

once the alarm resource has been monitored, receive notification of any anomalous trends. In order to

make the alarm manageable, OMA-LwM2M objects must contain three specific OMA-LwM2M

resources within their models:

• Alarm State, ID 6013, represents the True/False alarm status.

• Alarm Set Threshold, ID 6014, represents the threshold level to be set which will be used as a

parameter for activating the alarm. This resource is enabled for both reading (READ) and

writing (WRITE).

• Alarm Set Operator, ID 6015, is a readable and writable resource used in conjunction with the

Set Threshold to represent when an alarm is triggered. This resource must be set to one of the

following values:

o Greater than or equal to, that is, the alarm will be triggered when the sensor value is

greater than or equal to the threshold.

o Less than or equal to, that is, the alarm will be triggered when the sensor value is less

than or equal to the threshold.

7.5 Image Processing
Image processing for object and person recognition offers numerous benefits in various applications. It

enhances automation and efficiency in industries like surveillance, healthcare, and autonomous vehicles

by enabling real-time identification and tracking. This technology also aids in security and safety, as it

can detect intruders, monitor access points, and identify missing persons. In medical imaging, it assists

in diagnostics and treatment planning. Moreover, it improves user experiences in applications like

augmented reality and gaming. Additionally, image processing for object/person recognition contributes

to data analysis, enabling businesses to gain valuable insights from visual data, leading to better

decision-making and improved customer experiences. Several approaches have been proposed by the

literature [107]–[109]. The main categorization of these approaches is whether they fall into an

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 80 of 110

individual object detection category, where the objects are identified and localized separately, or into

density estimation category, in which the texture of the frame depicting a group or a crowd is analysed

to conclude an approximate density estimation, utilizing regression techniques. Most object-detection

algorithms are based on feature extraction and identification. In particular, they utilize trained

descriptors, which have been inferred using other images of similar objects as a training set as shown in

the figure below. Later, during the inference phase, the algorithm looks at whether these features are

present in the frame being examined. On the other hand, density estimation approaches are based on

analysing the “microstructures” of the image to produce an estimate of the density of the people being

depicted. The advantage of the later approach is that it can manage scenes, in which the individual

objects are occluded from other ones. In such a scenario, classical image processing approaches, which

try to localize them as a whole using pre-trained descriptors, fail, as the majority of the features are

occluded. This is mostly the case, when we are dealing with crowded scenes with a lot of objects/persons

occluding one another. As a result, we can follow a deep learning approach, which, based on

convolutional features extracted from convolutional layers are used to render a density map the

integration of which creates an estimate of the number of objects/persons apparent in the scene.

Figure 7-38: Descriptors extracted histogram of oriented gradients (Source: [26])

In conclusion, image processing for object and person recognition offers a wide array of benefits, from

enhancing automation and security to improving healthcare and user experiences. Its applications span

across various industries and contribute to data-driven decision-making, making it a valuable and

versatile technology with significant potential for innovation and improvement in our increasingly visual

world.

These features, together with SQL-like and non-relational access to the database and the implementation

of more web-oriented protocols for data sharing and other implemented solutions, enable the VOS to be

defined as an enhanced and enriched digital extension of the physical device to the internal network

infrastructure, VOStack, capable of enabling innovative function management logics with a view to

developing new future generation networks which will allow full integration of the virtual space of

services with the physical space of devices.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 81 of 110

8 Orchestration Management Interfaces
In NEPHELE, major importance is given on the convergence of IoT-based technologies with edge and

cloud computing orchestration technologies. The objective is to support the end-to-end orchestration of

distributed applications across the computing continuum in a unified way. Such applications are

represented in the form of an application graph and may include application components as well as VOs

and cVOs. All of them are represented in the form of microservices that are interconnected among each

other. Thus, we can speak about an application graph with application components and dependencies

among them. The dependencies are represented in the form of virtual links. In Figure 8-39, we depict a

high-level representation of the proposed approach where application graphs may be interlinked with

VOs and cVOs based on well-defined HTTP-based interfaces.

Figure 8-39: High-level view for the VO positioning in the computing continuum

In Figure 8-40, a more detailed representation of an indicative application graph is presented, where

application components, VOs and cVOs are accompanied with a set of metadata for declaring

deployment preferences and constraints.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 82 of 110

Figure 8-40: Application graph example with example constraints

Therefore, we consider that the (c)VO is an integral part of a distributed application graph and, thus,

manageable by cloud/edge computing orchestration mechanisms. Each VO can be independently

orchestrated as a part of a hyper-distributed application. As a result, the (c)VO interacts with applications

that require services from the VO (e.g., APIs to support the interconnection of IoT application graph

components with (c)VOs). Moreover, the (c)VOs interact with the respective Orchestration allowing

basic operations i.e., (a) monitoring (e.g., status of a (c)VO), (b) scaling (e.g., assign more resources to

a (c)VO), (c) lifecycle management (e.g., data required for the deployment of the (c)VO are stored in

the VO database and exposed to the orchestration platform). Moreover, the Orchestration platform can

execute health checks to the VO and the devices using the respective generic function for monitoring

reasons, for example triggering alerts when needed. All these addresses the non-functional requirements

NFR_VOS_07 and NFR_VOS_10 from Table 2.2.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 83 of 110

9 Intelligence on IoT Devices and interplay with

Virtual Objects
This task aims to facilitate on-device intelligence, which supports seamless interaction between the VOs

and the physical IoT devices. In particular, the task involves implementing IoT functions using TinyML

and complex event processing (CEP), extending existing VOs with additional features and services.

Deploying CEP and TinyML on IoT devices can enable on-device, real-time, context-aware decision-

making in response to the streaming data generated by these devices. Efficient deployment and

execution of these IoT functions are the focus of the task. The close collaboration with Task 4.2 ensures

that these developments align seamlessly with the VOStack, promoting consistency, synergy, and

interoperability throughout the framework. In this section, we address the non-functional requirements

NFR_VOS_07 and NFR_VOS_09 from Table 2.2.

An IoT system encompasses a vast network of equipment with sensors installed, from smart building to

factory motors, connecting all these assets to the digital realm. Through the pervasive deployment of

sensors, an extensive stream of data is continuously gathered and shared across the network, denoted as

big data. However, the significance of big data is not solely a function of its volume; rather, its value

lies in how effectively it is managed and harnessed. The information needs to be analysed and combined

with background knowledge to make quick decisions continuously and quickly, allowing for real-time

monitoring and in-depth analysis.

In the conventional compute-centric paradigm, raw data is continually transmitted from the IoT devices

to the cloud for centralised processing. However, as IoT devices become more prevalent, concerns are

raised. Transferring a large amount of data in this manner is not only energy-intensive but also

susceptible to attack and subject to high latency. As sensors and IoT devices become more cost-effective

and powerful, a shift towards edge computing is observed, where data processing occurs at the source,

directly on edge IoT devices. This novel approach is often referred to as the "data-centric paradigm."

By enabling intelligence at the edge, we process streaming data on IoT devices and send only necessary

information to the cloud, reducing communication costs, minimising latency, and safeguarding data

privacy. This approach offers real-time distributed data analysis, especially valuable in complex

environments, opening new horizons for applications.

However, it is important to acknowledge the challenges posed by IoT devices, which are designed for

longevity with limited resources and a focus on low power consumption. Many IoT devices operate

even without an operating system, making deploying intelligence (so-called IoT functions) in

decentralised sensor networks a complex endeavour. The situation is even more challenging when

various on-device intelligence (TinyML and CEP in this task) are deployed across decentralised IoT

networks. Key questions arise, such as how to deploy IoT functions to devices seamlessly, how to

discover the deployed IoT functions in a unified way, how to retrieve the results from these functions,

and how to coordinate services across the platform efficiently.

9.1 Approach
In response to these challenges, this task focuses on deploying intelligence on IoT devices with

interoperability and management in mind, which is tightly coupled with Task 4.2. Specifically, we

introduce two techniques, CEP and TinyML, and explore their powerful synergy, enabling on-device

processing and effectively reducing the need for extensive data transmission. Furthermore, this task

proposes a semantic-based workflow for the scalable management of on-device intelligence across

distributed IoT devices within the VOStack, building upon Task 4.2.1 and 4.2.2.

9.2 Complex Event Processing

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 84 of 110

Figure 9-41: System Design of the μCEP Engine

CEP is a widely used method for analysing and identifying patterns within heterogeneous streaming

sources. Users can define logical rules to specify the desired sequence and patterns in the streaming data.

The CEP system then continuously monitors incoming data against these rules and generates

notifications (complex events) when a match occurs, be it a special incident or an error in the system.

This task develops an μCEP engine capable of processing streaming events directly on resource

constrained IoT devices with high throughput and minimal latency. This empowers on-device

monitoring, making it a valuable addition to IoT systems. The engine, depicted in Figure 9-41, requires

as little as 20 KB of memory. It comprises four components: a rule receiver, a parser responsible for

interpreting the rules, an event rule base that manages these rules, and a processing core.

Several types of data, including sensor readings and inference results, can be fed into the μCEP engine

as "atomic events." Upon arrival, the engine autonomously analyses the temporal and spatial

relationships between these atomic events. When incoming events match with predefined patterns, the

engine instantly generates results in the form of complex events. To ensure efficient operation, the μCEP

engine maintains a running buffer for events and automatically discards events that do not fit within the

scope of the stored rules. The engine is designed to follow the language derived from ETALIS, outlined

in [64]. More explanation and examples of the language can be found in [63].

A noteworthy feature of the engine is its ability to modify rules on the fly, allowing the system to update

CEP rules during runtime. This empowers users to adapt reasoning logic on the fly, enhancing VOs with

flexible monitoring functionalities. The μCEP engine not only enables on-device monitoring but also

facilitates data management on IoT devices. With the μCEP engine, the massive data on IoT devices

can be filtered, aggregated, and compressed based on user definition. This process extracts essential

information before transmitting data to the cloud, reducing communication overhead, and improving

application efficiency.

9.3 TinyOL (TinyML with Online Learning)

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 85 of 110

Figure 9-42: Building blocks of TinyOL

TinyML is an emerging AI field focusing on deploying NN at the edge. Currently, many TinyML

solutions like TensorFlow Lite Micro and MicroTVM follow the traditional approach. They train models

offline on powerful machines or in the cloud, which are then loaded onto IoT devices for inference.

However, once deployed, these offline-trained models become static and may not maintain their

effectiveness in changing real-world environments, a problem known as "concept drift and data drift."

The situation implies that the statistical properties of field data can change over time, which the offline-

trained models cannot foresee during their initial training. Consequently, these models may perform

arbitrarily poorly after deployment.

This task proposes a solution called TinyML with online learning (TinyOL) that builds upon existing

TinyML models [110]. TinyOL allows for incremental on-device post-training directly on IoT devices.

The system, illustrated in Figure 9-42, is implemented in C/C++. The principal component of TinyOL

is the layer highlighted in grey in the figure, which can be added to any existing NN as an additional

layer in IoT devices. In addition to performing inference, TinyOL enables on-device training by

leveraging online learning. Typically, offline-trained models remain fixed once uploaded in the Flash

memory of an IoT device. However, TinyOL can train the added layer as it operates in RAM. With

online learning, TinyOL enables NNs to learn from massive streaming data one piece at a time without

retaining historical data. As a result, the models remain adaptable to changing conditions after

deployment and can address "drifts" effectively.

New sample data flows through the existing NN at each step and is subsequently fed into TinyOL.

Depending on the specific tasks, the system updates the accumulated mean and variance, offering the

option to standardise the input data. Subsequently, the system performs an inference. If a corresponding

label is available, the evaluation metrics and the additional layer's weights are adapted using online

gradient descent algorithms, e.g., stochastic gradient descent (SGD). Thus, the training and prediction

steps are interleaved. Once the neurons in the added layer are updated, the data pairs can be discarded

effectively. Only one data pair resides in the memory at a time. This design minimises memory usage,

making it well-suited for IoT devices with limited resources.

TinyOL empowers IoT devices to undertake AI/ML tasks directly within dynamic environments. This

includes activities such as object and human detection (Use Case #1) and prediction of future values

related to risks, motion (Use Case #2), or environmental conditions (Use Case #3). By computing data

locally instead of streaming it to the cloud, TinyML offers computational efficiency, lower latency,

reduced communication overhead, and improved privacy.

9.4 Interplay with VOs
In section 4, the W3C WoT TD and its TM are employed to create a universal framework for modelling

and managing IoT devices and their on-device functions at scale. Heterogeneous knowledge about IoT

components can be semantically rendered in a unified language and centrally hosted in a graph database.

The Thing Model concept transforms VOs into digital twins, providing a simplified representation of

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 86 of 110

IoT devices and their numerous on-device functionalities. This permits easy discovery, offerings

management, and the orchestration of existing components across the IoT network, enabling vendor-

agnostic software-hardware co-management and reasoning over data. Furthermore, the knowledge about

the IoT devices and their on-device functions, such as CEP rules and TinyML models, will be

systematically refreshed within the knowledge database and exposed to VOs upon update. This

streamlined process ensures that VOs are constantly up to date with the latest information about IoT

devices and their embedded functionalities.

9.5 Current Status
We have developed the uCEP and TinyOL engines. The next step is already on the way, where we are

going to improve the efficiency of both components, benchmark their performances on the TargetV

devices, and integrate them into the use cases.

As shown in Figure 9-43, we have successfully ported the μCEP engine onto the TargetV device.

Additionally, the processes including the integration of the TinyOL engine are under development,

which is marked with dashed lines in the figure. Taking the project to the next level, we used the open

source coreMQTT library that empowers the TargetV device with MQTT client functionality for

seamless communication. With the coreMQTT library in place, the TargetV board gains the ability to

acquire new rules and TinyML models during runtime and instantaneously dispatch the results over

MQTT.

The TargetV device can now be connected to a WoT Servient, creating a bridge between the physical

world and the digital realm. WoT Servient exposes a generic REST interface, allowing pushing the new

rules and TinyML models and getting the generated values via HTTP. The ease of access to these values

through HTTP enhances the system's versatility, making it easier to integrate with a wide array of

external services and applications.

Figure 9-43: The overview of the current implementation status

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 87 of 110

10 VOStack Implementation and Open-Source

Activities
The following sections describe the VOStack implementation based on W3C WoT and OMA-

LwM2M models.

10.1 VO alignment with W3C
This section presents the alignment with the W3C Web of Things (WoT). The complete documentation

of this implementation can be found here36. Also, the related codebase is provided here37.

Based on the W3C WoT, the Exposed Thing (ET) is a software abstraction that represents a locally

hosted Thing that can be accessed over the network by remote Consumers. Similarly, a Consumed Thing

(CT) is a software abstraction that represents a remote Thing used by a local application.

In NEPHELE we consider two diverse types of deployments for the VOs according to the capabilities

of the devices:

• In case of devices with some computing capabilities (e.g., drones, robots, raspberry PIs), we

consider that the device can run a WoT runtime to communicate with the VO. As a result, the

VO has both an ET and a CT to expose the virtualized device to cVOs or other Consumers as

shown in Figure 10-44.

• In case of limited resources, we consider that the device directly communicates with the ET of

the VO, as shown in Figure 10-45.

Figure 10-44: VO deployment based on W3C WoT in case of device with computing capabilities.

Figure 10-45: VO deployment based on W3C WoT in case of device without computing capabilities.

VO Technology stack

36 https://netmode.gitlab.io/vo-wot/index.html

37 https://gitlab.eclipse.org/eclipse-research-labs/NEPHELE-project/vo-wot

https://www.w3.org/WoT/

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 88 of 110

This section explains the technology stack of the VO. We are using (updating and expanding) the python

implementation of the (Python WoT38). Concisely, the proposed technology stack is comprised of the

following basic functionalities:

1. Protocol Bindings: HTTP, MQTT, CoAP

2. Security Protocols: Basic, OAuth2, TLS

3. Storage: SQLite, InfluxDB

4. Generic Functions: A set of functions to support the basic operations that the interplay between

IoT and Applications require.

5. User-Defined Functions: A set of functions to extend the functionalities of the (c)VOs which

are contained to a python script.

6. (c)VO Descriptor: A descriptor to summarize all necessary information for the (c)VO.

7. Automation Script Runner: A script to configure the (c)VO according to the Descriptor.

8. Virtualization: Helm Chart for ease of Deployment in Kubernetes

Python script

The runtime requires a Python script that declares the user-defined code that manages interactions with

the Virtual Object. Apart from the ones mentioned in the Quick Start Guide the additional ones are:

1. Periodic Functions: snippets of code that need to run periodically.

2. Subscriptions to remote Events or Property Changes: snippets of code that need to run whenever

an event is emitted or a property is changed on a remote Virtual Object that has been consumed.

3. Proxy functions: declaration of Properties, Actions or Events as proxies meaning that interaction

with them is not managed locally but rather propagated to another Virtual Object

A full working example is located inside the examples/cli directory of the GitLab repository.

Setup

This section explains how to use the VO-WoT runtime to expose a device’s information. The three-file

format has been adopted to avoid boilerplate code and to simplify the development process. Three

components need to be defined by the user:

• Thing Description: a JSON representation of a thing according to the Web of Thing specification

specifying Properties, Actions and Events.

• (c)VO descriptor: a YAML descriptor containing initialization and configuration information.

• User-defined code: a Python script where the developer can define the code that will be run

upon Action invocation, handling of Events, etc.

After populating these three files, the user needs to install the python package and execute the cli module

as such:

A VO developer should provide a valid TD, a valid (c)VO descriptor and a valid python script with the

User-Defined Functions, to have a custom version of a VO. These components are then given as input

to a script runner component/cli that reads the Thing Description, the Virtual Object descriptor, and the

python script to configure the Virtual Object. This more declarative approach of describing the Virtual

Object was employed in order to minimize the boilerplate code a developer needs to write. Additionally,

this configuration process for the Virtual Object facilitates the deployment in a virtualized environment

such as Kubernetes.

Open-Source Activities

As said previously, the VO-WoT repository is a fork of the original WoTPy39 repository. WoTPy is an

experimental implementation of a W3C WoT Runtime40 and the W3C WoT Scripting API41 in Python,

inspired by the exploratory implementations located in the Thingweb GitHub page42. In this repository

we provide a clean and updated version of the original WoTPy repository, with the required new libraries

and functionalities to align with the new versions of the WoT modelling.

38 https://github.com/agmangas/wot-py/
39 https://github.com/agmangas/wot-py
40 https://github.com/w3c/wot-architecture/blob/master/proposals/terminology.md#wot-runtime
41 https://github.com/w3c/wot-architecture/blob/master/proposals/terminology.md#scripting-api
42 https://github.com/thingweb

https://github.com/agmangas/wot-py/
https://github.com/agmangas/wot-py/
https://github.com/agmangas/wot-py/
https://github.com/agmangas/wot-py
https://github.com/w3c/wot-architecture/blob/master/proposals/terminology.md#wot-runtime
https://github.com/w3c/wot-architecture/blob/master/proposals/terminology.md#scripting-api
https://github.com/thingweb
https://github.com/agmangas/wot-py/
https://github.com/agmangas/wot-py
https://github.com/w3c/wot-architecture/blob/master/proposals/terminology.md#wot-runtime
https://github.com/w3c/wot-architecture/blob/master/proposals/terminology.md#scripting-api
https://github.com/thingweb

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 89 of 110

Moreover, the VO-WoT repository is part of the w3c WoT Software and Middleware43 solutions.

10.2 VO Stack Implementation Based on W3C

The VOStack implementation details based on W3C WoT provided in this section is relevant in the

context of Use Case #3 for personalized devices. An overview of the VO stack implementation based

on the W3C architecture is shown in Figure 10-46. The target architecture facilitates the modelling,

orchestration, and management of constrained IoT devices.

Figure 10-46: The overview of the framework: the modelling, management and interoperability of IoT Devices and Their

Functions

The device layer is built with the Siemens proprietary PlatformV toolchain. PlatformV is an end-to-end

development suite for cost-sensitive devices with limited computational resources. With its fundamental

values - modularization, parallelization, and re-use - PlatformV brings speed, harmonization, and

innovation to the products and fun to the development process. Three core components of PlatformV

are used for the project implementation: EngineeringV, TargetV, and EmbeddedV. We introduce the

functionalities of each component as follows:

• EngineeringV: a simple and intuitive engineering tool, browser-based and licence-free, making

every developer productive from day one.

• TargetV: Commercially available target hardware lets developers get started with firmware

development right away. There is no need to wait for the product hardware to be available.

• EmbeddedV: An extensive library of firmware assets ready for re-use boosts efficiency and lets

developers focus on what is new and important about the products.

We engineer EmbeddedV firmware to be loaded onto TargetV devices using the EngineeringV tool.

Figure 10-47 demonstrates a TargetV device that is equipped with EngineeringV. Also, the TargetV

device incorporates the µCEP engine and TinyML engine.

43 https://www.w3.org/WoT/developers/#software

https://www.w3.org/WoT/developers/#software
https://www.w3.org/WoT/developers/#software

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 90 of 110

Figure 10-47: Deploying µCEP and TinyOL on Siemens IoT devices and implementing their digital twins using WoT Thing

Description

Deployed CEP rules and TinyML models, alongside the TargetV devices, are described with

corresponding W3C TMs and represented in VOs. This allows users to configure, interplay, and

maintain running devices at runtime. The framework also enables end consumers to also manage and

configure on-device functions (µCEP rules and models) on the fly using the VOM management API

shown in Figure 10-48. The end consumer can use the following on device application management

shown below to execute different API endpoints. This includes the following API requests: integration

of device models with rules, identification of all the rules deployed within the system, identification of

compatible devices and rules, as well as deploying, starting, and stopping and checking the status of

rules on WoT devices.

The technology stack employed in the implementation of VO stack components based on W3C

architecture includes the following:

• µCEP Engine: C, coreMQTT library

• TinyML Engine: C/C++

• Protocol Bindings: HTTP, MQTT

On-device function management: Python, SQLite database, SQLModel for Object-Relational Mapper,

Uvicorn Web server, and FastAPI Web framework.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 91 of 110

Figure 10-48: Virtual Object Manager REST API

10.3 VO alignment with OMA-LwM2M
The OMA-LwM2M standard offers a framework for monitoring and managing IoT devices, ensuring

seamless integration across IoT systems. Within this framework, every IoT device is conceptualized as

a collection of Objects, each characterized by its Resources. These Objects represent either hardware

or software facets of the device, while Resources de- tail their attributes. Both are assigned distinct IDs

and are structured using a specific meta-model [111]. By linking these IDs, a unique URI path is formed,

facilitating operations on individual resources. In our VO design, which aligns with the LwM2M

standard, we can outline and present a range of sensor resources, from temperature readings to software

functionalities. This setup enables the generation of standardized URIs for each piece of VO-related

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 92 of 110

data, accessible to application modules through Representational State Transfer (RESTful) methods like

Read, Write, and Delete. To bring the VO to life in line with OMA-LwM2M, every IoT device is

portrayed using objectIDs, defined in a configuration file (the Descriptor file), along with associated

protocols and security measures. In this architecture, the VO acts as the OMA-LwM2M Server, with

the IoT device housing the client. This arrangement allows the VO to present two distinct interface sets,

facilitating interactions between the VO and the IoT device (southbound) and between the VO and the

Application (northbound), as illustrated in the Figure 10-49.

Figure 10-49: VO architecture in OMA-LwM2M standard

10.4 VO Stack implementation based on OMA-LwM2M
The environment surrounding a Virtual Object (VO) is multifaceted, encompassing various components

that facilitate its operation and interaction within the computing continuum. This section delves into

these primary components, shedding light on their roles and functionalities.

The VO is intended as a microservice composed by:

• Southbound Interfaces (to physical devices).

• Northbound interfaces (towards consumer applications and cVO).

• Management interfaces (to set up the connection with the respective physical devices).

• Device Abstraction Layer, for the semantic description of physical devices according to the

OMA-LwM2M standard.

• Datastore: a relational, light, and fast database (SQLite) which will compose the data Volume

of the Container and interfaces to a non-relational datastore (InfluxDB) deployed external to the

VO container for high data rate resource values.

• Backend logic core for processing and enhancing functionality.

Southbound interfaces

This part of the service is dedicated to the interfaces that will communicate with physical devices for

data acquisition and device management. Among the various IoT protocols examined for the

implementation of these interfaces, it was decided to implement CoAP, MQTT/TCP and HTTP

protocols previously described in the document. Regardless of the protocol used, to remain relevant to

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 93 of 110

the LwM2M standard, the payload is always defined according to the OMA-LWM2M model using the

JSON format.

Figure 10-50: An example of MQTT southbound interface for READ operation.

Communications between physical devices and VOs are enabled by interfaces based on the URI path

ObjectID/ObjectInstanceID/ResourceID relating to the owned objects declared by the physical device.

The interfaces compliant with the standard are as follows:

• READ

• WRITE

• EXECUTE

• OBSERVE

• DELETE OBSERVE

 CoAP and HTTP are ReST based protocol and resources addressing is easily mapped between them, it

is not the same for the Publish/subscribe MQTT protocol. In MQTT, resources addressing take place

using topics. In this implementation it will be distinguished:

• Topic: resource identifier (ie./deviceID/objId/instId/resId/).

• FullTopic: composed of a prefix (ie. cmnd).

 The Topics are used following the standard modelling of the LwM2M protocol, which identifies a

unique URI for each resource. For instance, the topic of the value resource 5700 of the instance 0 of the

temperature object 3303 of the hot water device B01 will be made up as follows: B01/3303/0/5700.

FullTopics use, in addition to the topic, a prefix (e.g., cmnd). The prefixes are implemented to avoid the

possibility of creating any loops between MQTT topics. Within this implementation, three distinct

prefixes will be used:

• cmnd - prefix for giving commands or for asking status update.

• stat - reports the status or the configuration message.

• tele - reports telemetry information at given intervals.

Northbound Interfaces

The VO exposes these interfaces ready to other applications and/or services. The implementation takes

advantage of RESTful protocol (Representational State Transfer), specifically HTTP. This interface

level recalls the methods used in the OMA-LwM2M protocol to enable device management and

information notification operations. The specifications of each interface (endpoint) are summarized

later in the document.

• READ

• READ Realtime

• WRITE

• EXECUTE

• OBSERVE

READ

The VO receives a READ request from an application that wants to read information. It can be read:

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 94 of 110

• general information of the VO.

· information coming from an object inside the VO.

· information coming from an instance of an object.

· information coming from a resource.

 In the case of information coming from an object, it will be provided the data coming from all the

instance of the object requested. The VO can manage two diverse types of READ request. The first one

is a standard READ request (READ), that give back the last stored value by the VO. The second one is

the real-time request (READ Realtime, described below), that is forwarded to the physical device to

obtain an update value. The different use of the READ requests depends on the application requirements.

Interface is defined below:

• HTTP method: GET.

• Interface: api/clients

• Resource path: /deviceId/objectID(opt.)/InstanceID(opt.)/ResourceID(opt.)

• Parameters: null or ?getRealtime=true for Realtime request.

• Payload: null

 Depending on the requested level of information, it is necessary to specify the specific URI path.

WRITE

The VO receives a WRITE request from an application that wants to write a value or several values to

a specific resource or instance. The VO forwards the request to the device and stores the values. This

function can be used for Resources and Instances. Write Interface is defined below:

• HTTP Method: PUT

• Interface: api/clients

• Resource path: /deviceId/objectID/InstanceID/ResourceID(opt.)

• Parameters: null

• Payload:

Instance:{"id":”InstanceID”,"resources":[{"id":resID,"value":"XXX"},{"id":resID,"v

alue":"YYYY"}]}

Example for instance ‘0’:

{"id":”0”,"resources":[{"id":14,"value":"+01"},{"id":15,"value":"Europe/Reggio Calabria"}]}

Resource: {"id":”resID”,"value":"+01"}

Example for resource ’14’: {"id":14,"value":"+01"}

EXECUTE

The VO receives an execution request. The "Execute" operation is used to start/trigger some actions

and can only be performed on single resource. Interface is defined below:

• HTTP Method: POST

• Interface: api/clients

• Resource path: /deviceId/objectID/InstanceID/ResourceID

• Parameters: null

• Payload: null

OBSERVE

The VO receives the OBSERVE request from an application to track a resource, an object instance, or

an object. When an entity is under observation, the observer is registered in a list. The VO uses this list

to notify the application of the new incoming value of the observed entity. Doing so, a new observer

for the same entity will be added to the observer list without forwarding new OBSERVE requests

through the southbound interface and then to the device. Interface is defined below:

• HTTP Method: POST

• Interface: api/clients

• Resource path: /deviceId/objectID/InstanceID/ResourceID(opt.)/observe

• Parameters: null

• Payload: null

The observe request response will be:

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 95 of 110

Resource:{"event":"NOTIFICATION","data":{"ep":"VOid","res":"/3303/0/5700","val":{"id":

5700,”value":55}}}

Instance:{“event”:“NOTIFICATION”,“data”:{"ep":"Device1","res":"/3303/0","val":{"id":0,"

resources":[{"id":5601,"value":11.7}, {"id":5602,"value":24.0}, {"id":5700,"value":

15.6},{"id":5701,"value":"cel"}]}}

DELETE

This functionality is used to delete a previous OBSERVE. Interface is defined below.

• HTTP Method: DELETE

• Interface: api/clients

• Resource path: /deviceId/objectID/InstanceID/ResourceID(opt.)/observe

• Parameters: null

• Payload: null

 Moreover, through the NorthBound, the VO provides the interfaces for directly accessing the history

of the data recorded in the chosen period. These interfaces, exposed on the api/data path, will allow:

• Data extraction by type of resource, instance/object or object.

• Data extraction by value (applicable only on resource).

• Time frame definition for data extraction.

Datastore APIs

The interfaces, exposed on the api/data path, enable data aggregation, and specifically allow the

operations described below.

Data extraction by value (applicable only to a single resource)

This interface allows you to search for a specific value within the logged data of a specific resource, for

example, search when the value (resId=5700) of the temperature sensor (objectId=3303) took on a

specific value (val=18). In this request you can choose the type of operator to use in the search for the

match:

• less (“<”, operator=1),

• greater (“>”, operator=0),

• equal (“=”, by default).

 The API endpoint is defined as:

• HTTP method: GET.

• Interface: api/data

• Path: /deviceId/oggettoID/IstanzaID/ResourceID/value

• Parameters: ?value, operator (optional, default is “=”)

• Payload: empty

For instance, the following request returns in chronological order all recorded values less than 18.1:

/deviceId/oggettoID/IstanzaID/ResourceID/value?value=18.1&operator=1

Extraction of the last n recorded values.

The interface in question allows you to extract a limited series of values (n) from the same resource.

The API endpoint is defined as:

• HTTP method: GET.

• Interface: api/data

• Resource path: /deviceId/objectId/instanceId/resourceId/limit

• Parameters: ?limit=n

• Payload: empty

For instance, the following request returns the last 10 values, in chronological order, recorded on that

resource: /deviceId/objectId/instanceId/resourceId/limit?limit=10

Data extraction over a period of time

This interface allows consumer applications to extract a history of data for construction, for example,

to be used in specific diagrams inserted in dedicated dashboards. The dates must be entered according

to SimpleData format as described later on.

The API endpoint is defined as:

• HTTP method: GET.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 96 of 110

• Interface: api/data

• Resource path: /deviceId/objectID/InstanceID/ResourceID/date

• Parameters: ?startDate=yyyy-MM-dd hh:mm:ss&endDate=yyyy-MM-dd hh:mm:ss

• Payload: empty

For instance, the following request returns the values recorded over a 30 second time interval:

/deviceId/objectID/InstanceID/ResourceID/date?startDate=2023-10-30 10:14:12&endDate=2023-10-

30 10:14:42

DATASTORE

SQLite

In the SQL Lite, are implemented the table that are rarely changed, and more related to device

description according to the semantic model.

Those tables are:

1. Device: this table contains the descriptive attributes of the device such as VO name

(endpointname), lwm2m version, registrationId, etc.

2. Object: contains the LwM2M objects contained by the VO and their attributes as defined by

OMA-LwM2M.

3. Observable: they are the entities (instance or resource) placed under observation by one or

more observers.

4. Observer: contains the list of all external applications that have requested the observation of a

resource.

5. Resource: stores the list of resources made available by enabled OMA-LwM2M objects.

InfluxDB

In influxDB, are implemented the table that changes more frequently.

• Measurement table, the Measurement table is used to store the values notified by the device,

for each resource.

• Event table is used to register the row packet received by VO from the southbound interface

using JSON. Each event arrives in JSON format, and it is saved in row in this table.

Coding

The code of the VO is built using Spring boot. Spring Boot is an innovative project within the larger

Spring ecosystem, designed to simplify the process of building production-ready applications with

minimal upfront configuration. It provides a set of default configurations, libraries, and frameworks to

help developers create stand-alone, web-based applications with ease. One of the primary advantages

of Spring Boot is its ability to automatically configure your application based on the libraries present in

the project, eliminating the need for specifying beans in the configuration files. Within the Spring Boot

framework, the architecture is typically divided into layers, with each layer having a specific role. Two

of the most crucial layers are the Service and Controller layers.

Service Layer is responsible for the business logic of the application. It interacts with the data access

layer and performs CRUD (Create, Read, Update, Delete) operations. The ‘@Service‘ annotation in

Spring Boot is used to indicate that a class provides business services. These services are then injected

into controllers or other services, promoting the principle of inversion of control, and ensuring a clear

separation of concerns.

Controller Layer, annotated with ‘@Controller‘ or ‘@RestController‘, acts as an intermediary between

the model and the view. It listens to the client’s requests, processes them (with the help of services),

and returns the appropriate view or data. In the context of RESTful web services, the controller is

responsible for handling and responding to incoming HTTP requests, often returning JSON or XML

data. Together, the service and controller layers form the backbone of a Spring Boot application,

ensuring a modular and maintainable codebase while providing a seamless user experience.

For instance, to ensure a robust and maintainable implementation in line with Object-Oriented

Programming (OOP) principles, a layered approach was adopted. Initially, a general interface for the

ClientService was defined. This was followed by the creation of an abstract class that encapsulates the

common code shared between the two services, MQTT and CoAP. Building upon this foundation, two

concrete classes, ClientServiceM and ClientServiceU, were developed. These classes extend the abstract

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 97 of 110

class, ensuring a clear separation of concerns and promoting code reusability. A practical example

illustrating this layered approach can be found at link44. To provide a visual representation of the VO’s

functioning and the inter-relationship between the classes, a class diagram was constructed, as depicted

in Figure 10-51.

Figure 10-51: Class diagram describing ClientController and ClientService relationship.

To ensure the organization analysed in figure, the Spring Boot annotation @ConditionalOnProperty can

be used. The property annotation allows to register beans conditionally depending on the presence of a

configuration property. The configuration file (Descriptor) defines which communication protocol the

VO utilizes at the VO instantiation using bindingMode parameter: M (MQTT), or U (UDP), or H (HTTP)

So, the VO uses one single Spring Boot controller that, using the conditional on the configuration file,

creates a ClientService (M, H or U) depending on the value of the bindingMode.

The MQTT implementation is performed by using a class called MqClient. This class is used by the

ClientServiceM, the Spring boot service created when the VO is instantiated in MQTT mode. The

ClientServiceM manages the Controller calls by using the MQTT Paho Async Client that permits to

perform operations simultaneously with the connection or subscription.

Eclipse Leshan project provides ready-to-use classes for the implementation of a LwM2M CoAP server.

To integrate these capabilities into the VO, specific classes from the Leshan project were imported and

subsequently modified to fit the requirements of the VO.

10.5 VO-OMA-LwM2M Proof of Concept
This proof of concepts provides a tangible representation of the theoretical and practical work

undertaken throughout this project.

44 https://davidgiard.com/java-services-and-interfaces-in-a-spring-boot-application

https://davidgiard.com/java-services-and-interfaces-in-a-spring-boot-application

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 98 of 110

10.5.1 Setup and Equipment
This section delves into the specific tools, both hardware and software, which were employed to bring

the system to life. A comprehensive understanding of the setup is crucial, as it lays the foundation for

the subsequent sections where the architecture and implementation details are discussed. The choice of

each tool and equipment was influenced by their compatibility, efficiency, and the ease with which they

could be integrated into the overall system.

This Demo is not involved in the demonstration of Orchestration environment. Anyway, VO and cVO

has been deployed as containers using Docker. Docker is a platform used to develop, ship, and run

applications inside containers. Containers allow developers to package up an application with all parts

it needs, such as libraries and other dependencies, and ship it all out as one package. In the context of

the demo, Docker played a pivotal role in orchestrating multiple instances of the VO. By leveraging

Docker, multiple VOs could be activated simultaneously, ensuring scalability and flexibility.

Furthermore, Docker was not just limited to the VO. The instances of InfluxDB, which are integral for

real-time data management and storage, were also initiated and managed using Docker. This ensured a

cohesive environment where all components, from the VO to the databases, were managed uniformly,

reducing complexities and potential points of failure.

The Application layer of this demo focuses on the applications that transparently utilize the data

generated by the physical devices trough the (c)VO for visualization and interaction: the Node-RED

Dashboard.

Node-RED is a flow-based development tool for visual programming, initially developed by IBM for

wiring together hardware devices, APIs, and online services. It provides a web browser-based editor

that makes it easy to wire together flows using the wide range of nodes in the palette. Flows can be then

deployed to the runtime in a single click. The light-weight runtime is built on Node.js, taking full

advantage of its event-driven, non-blocking model, making it ideal for data-intensive real-time

applications that run across distributed devices. In the context of our system, Node-RED was employed

as a primary tool for the northbound interface due to its flexibility, ease of use, and extensive community

support45.

The physical device on ground utilized in the system is an ESP3246 based board, a highly versatile and

low-power system-on-chip (SoC) with integrated Wi- Fi and dual-mode Bluetooth capabilities.

Developed by Espressif Systems, the ESP32 is designed for mobile, wearable electronics, and IoT

applications. Its characteristics are: 520 KB SRAM, 448 KB ROM, 16 KB RTC SRAM. Moreover, the

sensor integrated to the real device setup is the DHT11 sensor. The DHT11 is a basic, ultra low-cost

digital temperature and humidity sensor. It uses a capacitive humidity sensor and a thermistor to measure

the surrounding air and outputs a digital signal on the data pin. The DHT11 provides the ESP32 with

real-time temperature and humidity readings, which are then relayed to the Virtual Object

10.5.2 PoC Architecture
The Proof-of-Concept system architecture, shown in Figure 10-52, is composed of three Virtual Objects,

each serving a distinct role to ensure seamless integration and communication. These include two

standard Virtual Objects, labelled as VO001 and VO002, and a Composite Virtual Object, CV001.

45 nodered.org/
46 https://www.espressif.com/en/products/socs/esp32

http://nodered.org/
https://www.espressif.com/en/products/socs/esp32

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 99 of 110

Figure 10-52: PoC architecture

Both VO001 and VO002 are equipped with their dedicated instances of SQLite and InfluxDB, ensuring

data integrity and efficient storage. The Composite Virtual Object, CV001, is an aggregation of the two

standard VOs, VO001 and VO002. This design allows for a hierarchical structure where the composite

object can efficiently manage and relay information from the individual Vos.

On the Southbound side, VO001 is connected to a physical device, specifically an ESP32 integrated

with a temperature sensor. This connection is facilitated using the MQTT protocol. In contrast, VO002

communicates with a simulated physical device, leveraging the CoAP protocol for data exchange.

The northbound communication is orchestrated between CV001 and VOs, and between CV001 and

Node-Red Application. CV001 acts as the primary interface for external applications. Both VO001 and

VO002 relay their data to CV001, which in turn communicates with a testing platform implemented

using Node-RED. This layered approach ensures that the communication between the VOs and the

application is streamlined and efficient.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 100 of 110

The communication protocol between the cVO and VOs is designed to be user-transparent, relying on

a ”Notify” mechanism. Whenever there is a new resource update from the southbound side, the

respective VO updates CV001. The composite object then takes the responsibility of updating the

Application, ensuring real-time data synchronization and minimal latency.

This architecture, with its clear division of roles and responsibilities, ensures that the system is scalable,

adaptable, and efficient in handling real-time data from various sources.

10.5.3 Application
Every update that the cVO receives from the VOs is notified to the northbound application built on

Node-RED. The data received are used to build a dashboard; one dashboard for each device. The user

can easily switch from dashboard to dashboard by using the side menu. The first dashboard is built on

the data received from the real device. The dashboard is shown in Figure 10-53.

Figure 10-53: PoC dashboard snapshot of Device 001

The second dashboard is built on the data received from the simulated device based on CoAP. The

dashboard is shown in Figure 10-54.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 101 of 110

Figure 10-54: Device D003 dashboard snapshot

10.5.4 Performance Analysis
The final part of the Proof-of-Concept activity consists of a performance analysis through some tests, to

better understand the improvement when adding InfluxDB to the VO stack.

The analysis performed is divided in two sections: Only store data (No Observer activation), Store and

notify (Observervation activated by node-red application).

Two values are analyzed: percentage of messages lost, and delay on messages elaboration.

The Percentage of message lost graphic indicate in the X axis the frequency of the test and on the Y

axis the percentage of message lost calculated like that:

𝑃𝑘𝑡𝑙𝑜𝑠𝑡% = (𝑝𝑘𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑) (𝑝𝑘𝑡𝑡𝑜𝑡𝑎𝑙)⁄ ∗ 100

where received indicates the messages received correctly by the VO and total indicates the total

messages sent by the device.

The delay on message elaboration is calculated as:

𝑑𝑒𝑙𝑎𝑦𝑀𝐸% = (𝑒𝑙𝑎𝑏𝑜𝑟𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑙𝑎𝑦) (𝑠𝑒𝑛𝑑𝑖𝑛𝑔𝑇𝑖𝑚𝑒)⁄ ∗ 100

The elaboration delay is the time that elapses from the last message sent by the device and the last

message computed by the VO; the sending Time indicates the time that the device uses to send all the

burst of messages. This data is calculated using:

𝑆𝑒𝑛𝑑𝑖𝑛𝑔𝑇𝑖𝑚𝑒 = 𝑚𝑒𝑠𝑠𝑎𝑔𝑒𝑠 ∗ 1 (𝑓𝑜𝑟𝑤𝑎𝑟𝑑𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)⁄

where # messages indicate the number of messages sent in the burst.

This formula is used to give a more general value of the delay and not strictly restricted to the number

of messages sent in the burst. Obviously more messages are sent in the burst higher is the flat delay.

Sampling it on the number of messages multiply the period, it can be obtained a smaller number of

messages dependent value.

Each analysis is conducted in the above-described system, considering 800 messages sent through

MQTT, with a simulated python MQTT client. The different frequencies used are calculated by the time

passing from a MQTT publish and another. Tests are conducted at the frequency of 20MHz, 10MHz,

5MHz, 2MHz, 1MHz, 0.5MHz.

Hardware environment

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 102 of 110

It is important to say that the machine computational power is provided by a standard PC, with 8 GB

ram and 2.2 GHz quad core. It is not even comparable with a normal state orchestration HW, but it is

enough for the Proof of Concept performed in this thesis aimed at testifying to the better performance

of InfluxDB with respect to SQLite.

Only store data scenario

In this case the VO enter the database only to write data and does not need to be forwarded.

The first analysis is built on the data that the VO can save in the database. It can be seen in figure that

for the lower frequency, both the databases perform sufficiently well. But at higher frequency SQL Lite

loses a relevantly higher amount of data. Data integrity is a really important in IoT scenario and should

be satisfied.

Figure 10-55: InfluxDB and SqlLite comparison on message lost on growing frequency.

The second analysis focuses on the delay with which the VO store the data in the database. The delay is

calculated after all the 800 messages are sent and is calculated in percentage with respect of the time

that all messages arrive. It can be seen in figure below how at low frequency both databases perform

decent job while at a higher frequency the SQL Lite delays are manifestly high compared to the one of

InfluxDB. At 20MHz the delay calculated by the formula is higher than the sending time (time that

device uses to send all the messages). In real-time system, data cannot arrive with an excessive delay;

and the delay observed for the SQL Lite could be inadequate.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 103 of 110

Figure 10-56: InfluxDB and SqlLite comparison on latency in message delivery on growing frequency

Store data and notify scenario.

In this case the VO enters for the first time the database to write data and for a second time to read

data to forward in northbound. This means that a slow database will be conditioned in a greater extent.

The figure below shows that in this case the amount of lost data is bigger.

Figure 10-57: InfluxDB and SqlLite comparison on message lost to northbound delivery on growing frequency.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 104 of 110

Also, in the case of Delay, InfluxDB has better performance. Almost reducing to 0 the delay for the

messages to arrive.

 In conclusion, the SQLite database suffers from concurrency access to its tables when there are different

and simultaneous write operations. So, the PoC demonstrates the limitation of SQLite datastore for high

frequency data transmission frequency higher than 2 Hz (0.5 seconds).

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 105 of 110

11 Conclusions

This document is the first report on the development of VOStack in the NEPHELE project. Virtual

Object Stack (VOStack) is a software stack, which can be used for creating, discovering, orchestrating,

and consuming Virtual Objects (VOs). The VOStack provides mechanisms for managing interactions

among IoT devices and VOs. VOStack resides at the edge and is a crucial component to efficiently

exploit resources in the continuum from Cloud-to-Edge-to-IoT-Device.

The VOStack and Virtual Objects are concepts introduced in the NEPHELE project to harness the

complexity of heterogeneity of different IoT devices, diverse communication protocols, and the

complexity of various information models for semantic representation of IoT assets. The ultimate

purpose of the VOStack and VOs is to enable an easy creation of applications, which are based on a

standard-conform and unified data access. This work has been conducted in Work Package 3, which is

concerned with the topic of convergence of different IoT Technologies with the goal of guaranteeing

continuous and seamless openness and interoperability.

In this document, we introduced concepts of VOs and VOStack in the NEPHELE project. The concepts

enable the vision of Digital Twin, which is based on standards such as W3C Web of Things, Open

Mobile Alliance (OMA) Lightweight M2M (LWM2M), and the Next Generation Service Interface -

Linked Data (NGSI-LD). We presented the status on the work related to intelligent IoT devices

modelling, management, and interoperability. We provided the semantic model for describing VO

functions, which run on an intelligent IoT device or Edge, as well as the VO Descriptor, which is a

declarative way to define a VO based on the related semantics and modelling. Security functionality at

the device and Edge level have been also worked out. Subsequently, the status on activities in the area

of autonomic functionalities and ad-hoc clouds is presented, too. Autonomic networking functionalities

at IoT level, as well as SDN reactive routing and Time Sensitive Networking have been also reported.

Further, we presented the development work on the set of functions that should be supported by the IoT

device virtualized functions and the generic/supportive functions layer of VOStack (e.g., elasticity

management, security, authentication, and telemetry functions). The preliminary work on the end-to-

end orchestration of distributed applications across the computing continuum in a unified way has been

presented too. The work will be extended in the next deliverable to support creation of application graphs

based on microservice-based VOs and cVOs. We reported on the current implementation of intelligent

IoT devices and their interplay with VOs. The first results based on TinyML and CEP mechanisms have

been demonstrated. Finally, we provided the status of VOStack implementation as a software stack that

will integrate all other developments in Work Package 3.

This deliverable has the focus on the definition of important concepts from NEPHELE project and the

first implementations thereof. The successor of this deliverable, i.e., D3.2, will provide the final release

of VOStack layers and intelligence mechanisms on IoT devices.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 106 of 110

References

[1] Z. Shelby, K. Hartke, and C. Bormann, “The constrained application protocol (CoAP),” 2014.

[2] M. A. A. da Cruz, J. J. P. C. Rodrigues, P. Lorenz, P. Solic, J. Al-Muhtadi, and V. H. C. Albuquerque,

“A proposal for bridging application layer protocols to HTTP on IoT solutions,” Future Generation

Computer Systems, vol. 97, pp. 145–152, 2019.

[3] M. Nitti, V. Pilloni, G. Colistra, and L. Atzori, “The virtual object as a major element of the internet of

things: a survey,” IEEE Communications Surveys & Tutorials, vol. 18, no. 2, pp. 1228–1240, 2015.

[4] L. Atzori et al., “SDN&NFV contribution to IoT objects virtualization,” Computer Networks, vol. 149,

pp. 200–212, 2019.

[5] M. A. Jarwar, S. Ali, and I. Chong, “Microservices model to enhance the availability of data for

buildings energy efficiency management services,” Energies (Basel), vol. 12, no. 3, p. 360, 2019.

[6] M. Segovia and J. Garcia-Alfaro, “Design, modeling and implementation of digital twins,” Sensors, vol.

22, no. 14, p. 5396, 2022.

[7] H. Kokkonen et al., “Autonomy and intelligence in the computing continuum: Challenges, enablers, and

future directions for orchestration,” arXiv preprint arXiv:2205.01423, 2022.

[8] J. M. Cantera Fonseca and M. Bauer, “2nd W3C Workshop on the Web of Things.” Nov. 01, 2018.

Accessed: Oct. 02, 2023. [Online]. Available: https://www.w3.org/WoT/ws-

2019/Papers/05%20-%20Fonseca%20+%20Bauer%20-%20ERCIM%20Position%20Statement.pdf

[9] J. M. Cantera, “Towards interworking between NGSI-LD and WoT (2 nd W3C Workshop on Web of

Things) Public review,” Jun. 2019. [Online]. Available : https://www.w3.org/WoT/ws-

2019/Presentations%20-%20Day%202/Future%20Work/14_ETSI%20ISG%20CIM%20-%20Presenta

tion_for_WoT_Workshop_Munich_05th_June_2019.pdf

[10] L. Frost, “HOW COULD WOT AND NGSI-LD FIT TOGETHER?,” Aug. 2018.

[11] A. Abid, J. Lee, F. Le Gall, and J. Song, “Toward Mapping an NGSI-LD Context Model on RDF Graph

Approaches: A Comparison Study,” Sensors, vol. 22, no. 13, Jul. 2022, doi: 10.3390/s22134798.

[12] M. Lagally, R. Matsukura, M. McCool, and K. Toumura, “Web of Things (WoT) Architecture 1.1,”

W3C Proposed Recommendation, Jul. 11, 2023

[13] S. Kaebisch, M. McCool, and E. Korkan, “Web of Things (WoT) Thing Description 1.1,” W3C

Proposed Recommendation, Jul. 11, 2023

[14] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, P.-A. Champin, and N. Lindström, “JSON-LD 1.1 -

A JSON-based Serialization for Linked Data,” W3C Recommendation. Accessed: Nov. 29, 2023.

[Online]. Available: https://www.w3.org/TR/json-ld11/

[15] S. Z. A. S. H. J. Klas G. Rodermund F., “OMA Whitepaper LightweightM2M,” 2014.

[16] F. Ahmed, “Self-organization: a perspective on applications in the internet of things,” Natural

Computing for Unsupervised Learning, pp. 51–64, 2019.

[17] S. Hamrioui, J. Lloret, P. Lorenz, and J. J. P. C. Rodrigues, “Cross-Layer Approach for Self-Organizing

and Self-Configuring Communications Within IoT,” IEEE Internet Things J, vol. 9, no. 19, pp. 19489–

19500, 2022.

[18] N. Santi and N. Mitton, “A resource management survey for mission critical and time critical

applications in multi access edge computing,” ITU Journal on Future and Evolving Technologies, vol.

2, no. 2, 2021.

[19] F. Saeik et al., “Task offloading in Edge and Cloud Computing: A survey on mathematical, artificial

intelligence and control theory solutions,” Computer Networks, vol. 195, p. 108177, 2021.

[20] D. Dechouniotis, N. Athanasopoulos, A. Leivadeas, N. Mitton, R. Jungers, and S. Papavassiliou, “Edge

computing resource allocation for dynamic networks: The DRUID-NET vision and perspective,”

Sensors, vol. 20, no. 8, p. 2191, 2020.

[21] N. Javaid, A. Sher, H. Nasir, and N. Guizani, “Intelligence in IoT-based 5G networks: Opportunities

and challenges,” IEEE Communications Magazine, vol. 56, no. 10, pp. 94–100, 2018.

[22] G. Leenders, G. Callebaut, L. der Perre, and L. De Strycker, “Multi-RAT IoT–What’s to Gain? An

Energy-Monitoring Platform,” in 2023 IEEE 97th Vehicular Technology Conference (VTC2023-Spring),

2023, pp. 1–5.

[23] B. Foubert and N. Mitton, “Lightweight network interface selection for reliable communications in

multi-technologies wireless sensor networks,” in 2021 17th International Conference on the Design of

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 107 of 110

Reliable Communication Networks, DRCN 2021, Institute of Electrical and Electronics Engineers Inc.,

Apr. 2021. doi: 10.1109/DRCN51631.2021.9477350.

[24] IEEE, “IEEE Standard for Local and metropolitan area networks – Bridges and Bridged Networks -

Amendment 25: Enhancements for Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE

Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std

802.1Q-2014/Cor 1-2015), pp. 1–57, 2016, doi: 10.1109/IEEESTD.2016.8613095.

[25] A.-C. G. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Towards a software-defined

Network Operating System for the IoT,” in 2015 IEEE 2nd World Forum on Internet of Things (WF-

IoT), IEEE, Dec. 2015, pp. 579–584. doi: 10.1109/WF-IoT.2015.7389118.

[26] B. T. De Oliveira, L. B. Gabriel, and C. B. Margi, “TinySDN: Enabling multiple controllers for

software-defined wireless sensor networks,” IEEE Latin America Transactions, vol. 13, no. 11, pp.

3690–3696, 2015.

[27] M. Baddeley et al., “Atomic-SDN: Is synchronous flooding the solution to software-defined networking

in IoT?,” IEEE Access, vol. 7, pp. 96019–96034, 2019.

[28] S. Bera, S. Misra, S. K. Roy, and M. S. Obaidat, “Soft-WSN: Software-defined WSN management

system for IoT applications,” IEEE Syst J, vol. 12, no. 3, pp. 2074–2081, 2016.

[29] T. Theodorou and L. Mamatas, “CORAL-SDN: A software-defined networking solution for the Internet

of Things,” in 2017 IEEE conference on network function virtualization and software defined networks

(NFV-SDN), 2017, pp. 1–2.

[30] T. Theodorou and L. Mamatas, “A versatile out-of-band software-defined networking solution for the

Internet of Things,” IEEE Access, vol. 8, pp. 103710–103733, 2020.

[31] T. Theodorou and L. Mamatas, “SD-MIoT: A software-defined networking solution for mobile Internet

of Things,” IEEE Internet Things J, vol. 8, no. 6, pp. 4604–4617, 2020.

[32] T. Theodorou, G. Violettas, P. Valsamas, S. Petridou, and L. Mamatas, “A Multi-Protocol Software-

Defined Networking Solution for the Internet of Things,” IEEE Communications Magazine, vol. 57, no.

10, pp. 42–48, Oct. 2019, doi: 10.1109/MCOM.001.1900056.

[33] OpenAI, “ChatGPT.” Nov. 2023. [Online]. Available: https://openai.com/blog/chatgpt

[34] Statista, “Microcontroller unit (mcu) shipments forecast worldwide from 2021 to 2027.” Nov. 2023.

[Online]. Available: https://www.statista.com/statistics/1327567/worldwide-microcontroller-unit-

shipments-forecast/

[35] M. Shafique, T. Theocharides, V. J. Reddy, and B. Murmann, “TinyML: current progress, research

challenges, and future roadmap,” in 2021 58th ACM/IEEE Design Automation Conference (DAC), 2021,

pp. 1303–1306.

[36] L. Ravaglia, M. Rusci, D. Nadalini, A. Capotondi, F. Conti, and L. Benini, “A tinyml platform for on-

device continual learning with quantized latent replays,” IEEE J Emerg Sel Top Circuits Syst, vol. 11,

no. 4, pp. 789–802, 2021.

[37] H. Cai, C. Gan, L. Zhu, and S. Han, “Tiny transfer learning: Towards memory-efficient on-device

learning,” arXiv preprint arXiv:2007.11622, vol. 3, no. 4, p. 6, 2020.

[38] M. Giordano et al., “CHIMERA: A 0.92 TOPS, 2.2 TOPS/W edge AI accelerator with 2 MByte on-chip

foundry resistive RAM for efficient training and inference,” in 2021 symposium on VLSI circuits, 2021,

pp. 1–2.

[39] B. Jiao et al., “A 0.57-gops/dsp object detection pim accelerator on fpga,” in Proceedings of the 26th

Asia and South Pacific Design Automation Conference, 2021, pp. 13–14.

[40] V. Jain, N. Jadhav, and M. Verhelst, “Enabling real-time object detection on low cost FPGAs,” J Real

Time Image Process, vol. 19, no. 1, pp. 217–229, 2022.

[41] B. Sudharsan, P. Yadav, J. G. Breslin, and M. I. Ali, “An sram optimized approach for constant memory

consumption and ultra-fast execution of ml classifiers on tinyml hardware,” in 2021 IEEE International

Conference on Services Computing (SCC), 2021, pp. 319–328.

[42] H. Qiu et al., “ML-EXray: Visibility into ML deployment on the edge,” Proceedings of Machine

Learning and Systems, vol. 4, pp. 337–351, 2022.

[43] P. Corneliou, P. Nikolaou, M. K. Michael, and T. Theocharides, “Fine-grained vulnerability analysis of

resource constrained neural inference accelerators,” in 2021 IEEE International Symposium on Defect

and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2021, pp. 1–6.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 108 of 110

[44] V. J. Reddi et al., “Widening access to applied machine learning with tinyml,” arXiv preprint

arXiv:2106.04008, 2021.

[45] STMicroelectronics, “Ai expansion pack for stm32cubemx.” Nov. 2023. [Online]. Available:

https://www.st.com/en/embedded-software/x-cube-ai.html

[46] T. Chen et al., “{TVM}: An automated {End-to-End} optimizing compiler for deep learning,” in 13th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 18), 2018, pp. 578–594.

[47] R. David et al., “Tensorflow lite micro: Embedded machine learning for tinyml systems,” Proceedings

of Machine Learning and Systems, vol. 3, pp. 800–811, 2021.

[48] J. Lu, A. Liu, F. Dong, F. Gu, J. Gama, and G. Zhang, “Learning under concept drift: A review,” IEEE

Trans Knowl Data Eng, vol. 31, no. 12, pp. 2346–2363, 2018.

[49] Ó. Fontenla-Romero, B. Guijarro-Berdiñas, D. Martinez-Rego, B. Pérez-Sánchez, and D. Peteiro-Barral,

“Online machine learning,” in Efficiency and Scalability Methods for Computational Intellect, IGI

global, 2013, pp. 27–54.

[50] M. Andrade, E. Gasca, and E. Rendón, “Implementation of Incremental Learning in Artificial Neural

Networks.,” in GCAI, 2017, pp. 221–232.

[51] F. M. Castro, M. J. Mar\’\in-Jiménez, N. Guil, C. Schmid, and K. Alahari, “End-to-end incremental

learning,” in Proceedings of the European conference on computer vision (ECCV), 2018, pp. 233–248.

[52] R. Kolcun et al., “The case for retraining of ML models for IoT device identification at the edge,” arXiv

preprint arXiv:2011.08605, 2020.

[53] M. Farhadi, M. Ghasemi, S. Vrudhula, and Y. Yang, “Enabling incremental knowledge transfer for

object detection at the edge,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition Workshops, 2020, pp. 396–397.

[54] D. Li, S. Tasci, S. Ghosh, J. Zhu, J. Zhang, and L. Heck, “RILOD: Near real-time incremental learning

for object detection at the edge,” in Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,

2019, pp. 113–126.

[55] N. Kukreja et al., “Training on the Edge: The why and the how,” in 2019 IEEE International Parallel

and Distributed Processing Symposium Workshops (IPDPSW), 2019, pp. 899–903.

[56] S. Disabato and M. Roveri, “Incremental on-device tiny machine learning,” in Proceedings of the 2nd

International workshop on challenges in artificial intelligence and machine learning for internet of

things, 2020, pp. 7–13.

[57] T. Pimentel, M. Monteiro, A. Veloso, and N. Ziviani, “Deep active learning for anomaly detection,” in

2020 International Joint Conference on Neural Networks (IJCNN), 2020, pp. 1–8.

[58] H. Ren, D. Anicic, and T. A. Runkler, “Tinyol: Tinyml with online-learning on microcontrollers,” in

2021 International Joint Conference on Neural Networks (IJCNN), 2021, pp. 1–8.

[59] N. Giatrakos, E. Alevizos, A. Artikis, A. Deligiannakis, and M. Garofalakis, “Complex event

recognition in the big data era: a survey,” The VLDB Journal, vol. 29, pp. 313–352, 2020.

[60] T. A. S. Fundation, “Apache flink.” Feb. 2021. [Online]. Available:

https://ci.apache.org/projects/flink/flink-docs-release-1.12

[61] TIBCO, “TIBCO.” Nov. 2023. [Online]. Available: https://www.tibco.com

[62] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data stream processing and edge

computing: A survey on resource elasticity and future directions,” Journal of Network and Computer

Applications, vol. 103, pp. 1–17, 2018.

[63] P. Graubner et al., “Multimodal complex event processing on mobile devices,” in Proceedings of the

12th ACM international conference on distributed and event-based systems, 2018, pp. 112–123.

[64] N. Govindarajan, Y. Simmhan, N. Jamadagni, and P. Misra, “Event processing across edge and the

cloud for internet of things applications,” in Proceedings of the 20th International Conference on

Management of Data, 2014, pp. 101–104.

[65] M. Vrbaski, M. Bolic, and S. Majumdar, “Complex event recognition notification methodology for

uncertain IoT systems based on micro-service architecture,” in 2018 IEEE 6th International Conference

on Future Internet of Things and Cloud (FiCloud), 2018, pp. 184–191.

[66] C. Y. Chen, J. H. Fu, T. Sung, P.-F. Wang, E. Jou, and M.-W. Feng, “Complex event processing for the

internet of things and its applications,” in 2014 IEEE International Conference on Automation Science

and Engineering (CASE), 2014, pp. 1144–1149.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 109 of 110

[67] L. Lan, R. Shi, B. Wang, L. Zhang, and N. Jiang, “A universal complex event processing mechanism

based on edge computing for internet of things real-time monitoring,” IEEE Access, vol. 7, pp. 101865–

101878, 2019.

[68] H. Ren, D. Anicic, and T. A. Runkler, “The synergy of complex event processing and tiny machine

learning in industrial IoT,” in Proceedings of the 15th ACM International Conference on Distributed

and Event-based Systems, 2021, pp. 126–135.

[69] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic, and R. Studer, “Etalis: Rule-based

reasoning in event processing,” Reasoning in event-based distributed systems, pp. 99–124, 2011.

[70] J. Wanner, C. Wissuchek, and C. Janiesch, “Machine Learning and Complex Event Processing: A

Review of Real-time Data Analytics for the Industrial Internet of Things,” Enterprise Modelling and

Information Systems Architectures (EMISAJ), vol. 15, p. 1, 2020.

[71] N. Mehdiyev, J. Krumeich, D. Enke, D. Werth, and P. Loos, “Determination of rule patterns in complex

event processing using machine learning techniques,” Procedia Comput Sci, vol. 61, pp. 395–401, 2015.

[72] R. Mousheimish, Y. Taher, and K. Zeitouni, “Automatic learning of predictive cep rules: bridging the

gap between data mining and complex event processing,” in Proceedings of the 11th ACM international

conference on distributed and event-based systems, 2017, pp. 158–169.

[73] R. Bruns, J. Dunkel, and N. Offel, “Learning of complex event processing rules with genetic

programming,” Expert Syst Appl, vol. 129, pp. 186–199, 2019.

[74] Y. Wang, H. Gao, and G. Chen, “Predictive complex event processing based on evolving Bayesian

networks,” Pattern Recognit Lett, vol. 105, pp. 207–216, 2018.

[75] A. Power and G. Kotonya, “Providing fault tolerance via complex event processing and machine

learning for iot systems,” in Proceedings of the 9th International Conference on the Internet of Things,

2019, pp. 1–7.

[76] T. Xing et al., “Deepcep: Deep complex event processing using distributed multimodal information,” in

2019 IEEE international conference on smart computing (SMARTCOMP), 2019, pp. 87–92.

[77] J. A. C. Soto, M. Jentsch, D. Preuveneers, and E. Ilie-Zudor, “CEML: Mixing and moving complex

event processing and machine learning to the edge of the network for IoT applications,” in Proceedings

of the 6th International Conference on the Internet of Things, 2016, pp. 103–110.

[78] ETSI, “GS CIM 009 - V1.7.1 - Context Information Management (CIM); NGSI-LD API,” 2023.

[Online]. Available: https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

[79] R. Fielding et al., “Hypertext Transfer Protocol -- HTTP/1.1,” Jun. 1999. doi: 10.17487/rfc2616.

[80] A. Banks, E. Briggs, K. Borgendale, and R. Gupta, “MQTT Version 5.0, OASIS Standard,” OASIS

Standard. Mar. 07, 2019. Accessed: Nov. 29, 2023. [Online]. Available: https://docs.oasis-

open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html

[81] Z. Shelby, K. Hartke, and C. Bormann, “The Constrained Application Protocol (CoAP),” Jun. 2014. doi:

10.17487/rfc7252.

[82] R. T. Fielding, “REST: architectural styles and the design of network-based software architectures,”

2000.

[83] B. Foubert and N. Mitton, “Lightweight network interface selection for reliable communications in

multi-technologies wireless sensor networks,” in 2021 17th International Conference on the Design of

Reliable Communication Networks (DRCN), 2021, pp. 1–6.

[84] B. Foubert and N. Mitton, “RODENT: a flexible TOPSIS based routing protocol for multi-technology

devices in wireless sensor networks,” ITU Journal on Future and Evolving Technologies, vol. 2, no. 1,

2021.

[85] S. S. Craciunas, R. S. Oliver, M. Chmel\’\ik, and W. Steiner, “Scheduling real-time communication in

IEEE 802.1 Qbv time sensitive networks,” in Proceedings of the 24th International Conference on Real-

Time Networks and Systems, 2016, pp. 183–192.

[86] M. Vlk, Z. Hanzálek, and S. Tang, “Constraint programming approaches to joint routing and scheduling

in time-sensitive networks,” Comput Ind Eng, vol. 157, p. 107317, 2021.

[87] F. Ansah, M. A. Abid, and H. de Meer, “Schedulability analysis and GCL computation for time-sensitive

networks,” in 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), 2019, pp.

926–932.

Document name: D3.1 Initial Release of VOStack Layers and Intelligence Mechanisms on IoT

Devices

Page: 110 of 110

[88] M. Pahlevan and R. Obermaisser, “Genetic algorithm for scheduling time-triggered traffic in time-

sensitive networks,” in 2018 IEEE 23rd international conference on emerging technologies and factory

automation (ETFA), 2018, pp. 337–344.

[89] T. Stüber, L. Osswald, S. Lindner, and M. Menth, “A Survey of Scheduling Algorithms for the Time-

Aware Shaper in Time-Sensitive Networking (TSN),” IEEE Access, 2023.

[90] M. Vlk, Z. Hanzalek, K. Brejchova, S. Tang, S. Bhattacharjee, and S. Fu, “Enhancing Schedulability

and Throughput of Time-Triggered Traffic in IEEE 802.1Qbv Time-Sensitive Networks,” IEEE

Transactions on Communications, vol. 68, no. 11, pp. 7023–7038, Nov. 2020, doi:

10.1109/TCOMM.2020.3014105.

[91] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling Real-Time Communication in

IEEE 802.1Qbv Time Sensitive Networks,” in Proceedings of the 24th International Conference on

Real-Time Networks and Systems, New York, NY, USA: ACM, Oct. 2016, pp. 183–192. doi:

10.1145/2997465.2997470.

[92] P. Baptiste, P. Laborie, C. Le Pape, and W. Nuijten, “Constraint-based scheduling and planning,” in

Foundations of artificial intelligence, vol. 2, Elsevier, 2006, pp. 761–799.

[93] J. Schimpf and K. Shen, “ECLiPSe–from LP to CLP,” Theory and Practice of Logic Programming, vol.

12, no. 1–2, pp. 127–156, 2012.

[94] G. N. Kumar, K. Katsalis, and P. Papadimitriou, “Coupling source routing with time-sensitive

networking,” in 2020 IFIP Networking Conference (Networking), 2020, pp. 797–802.

[95] G. Papathanail, L. Mamatas, and P. Papadimitriou, “Towards the Integration of TAPRIO-based

Scheduling with Centralized TSN Control,” in 2023 IFIP Networking Conference (IFIP Networking),

2023, pp. 1–6.

[96] D. Reed et al., “Decentralized identifiers (dids) v1. 0,” Draft Community Group Report, 2020.

[97] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström, “JSON-LD 1.1,” W3C

Recommendation, Jul, 2020.

[98] N. G. L. D. B. D. C. Z. B. Sporny M. and D. Chadwick, “Verifiable Credentials Data Model 1.1,” 2022.

[99] O. Standard, “MQTT Version 5.0,” Retrieved June, vol. 22, p. 2020, 2019.

[100] G. Selander, J. Mattsson, F. Palombini, and L. Seitz, “Object security for constrained restful

environments (oscore),” 2019.

[101] M. B. Y. K. Microsoft Jones and T. Lodderstedt, “Self-Issued OpenID Provider V2,” 2023.

[102] O. Terbu, T. Lodderstedt, K. Yasuda, and T. Looker, “OpenID for Verifiable Presentations - draft 18.”

Apr. 21, 2023. Accessed: Nov. 29, 2023. [Online]. Available: https://openid.net/specs/openid-4-

verifiable-presentations-1_0.html

[103] B. J. J. M. de M. B. Sakimura N. and C. Mortimore, “OpenID Connect Core 1.0 incorporating errata set

1,” 2014.

[104] M. Jones, J. Bradley, and N. Sakimura, “JSON Web Token (JWT),” May 2015. doi: 10.17487/RFC7519.

[105] Y. K. Lodderstedt T. and T. Looker, “OpenID for Verifiable Credential Issuance,” 2023.

[106] V. Foteinos et al., “A Cognitive Management Framework for Empowering the Internet of Things,” in

The Future Internet, A. Galis and A. Gavras, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013,

pp. 187–199.

[107] K. Khan, W. Albattah, R. U. Khan, A. M. Qamar, and D. Nayab, “Advances and trends in real time

visual crowd analysis,” Sensors, vol. 20, no. 18, p. 5073, 2020.

[108] J. Shao, C. Change Loy, and X. Wang, “Scene-independent group profiling in crowd,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2014, pp. 2219–2226.

[109] L. Al-Salhie, M. Al-Zuhair, and A. Al-Wabil, “Multimedia Surveillance in Event Detection: Crowd

Analytics in Hajj,” 2014, pp. 383–392. doi: 10.1007/978-3-319-07626-3_35.

[110] S. Herath, S. Irandoust, B. Chen, Y. Qian, P. Kim, and Y. Furukawa, “Fusion-dhl: Wifi, imu, and

floorplan fusion for dense history of locations in indoor environments,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA), 2021, pp. 5677–5683.

[111] O. M. Alliance, “OMA LightWeight M2M (LWM2M) Object and Resource Registry.” 2014.

