

A Lightweight Software Stack and Synergetic Meta-Orchestration Framework

for the Next Generation Compute Continuum

D5.1 First Release of NEPHELE Platform,

Dashboard and DevOps Environment Setup

Keywords:

Telecom infrastructures, networking, Virtual Object, W3C WoT, OMA LwM2M, CI/CD, DevOps

Document Identification

Status Final Due Date 29/02/2024

Version 1.0 Submission Date 29/02/2024

Related WP WP5 Document Reference D5.1

Related

Deliverable(s)

D3.1, D4.1 Dissemination Level (*) PU

Lead Participant SMILE Lead Author Jonathan Rivalan

Contributors SMILE, UOM, ECL,
ATOS, NTUA

Reviewers Marco Jahn (ECLIPSE)

Dimitris Spatharakis
(NTUA)

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 2 of 37

Document Information

List of Contributors

Name Partner

Jonathan Rivalan SMILE

Hai Long Ngo SMILE

Saifuddin Mohammad SMILE

Georgios Papathanail UOM

Panagiotis Papadimitriou UOM

Lefteris Mamatas UOM

Ilias Sakellariou UOM

Guillermo Gomez ATOS

Anastasios Zafeiropoulos NTUA

Dimitrios Spatharakis NTUA

Nikos Filinis NTUA

Eleni Fotopoulou NTUA

Ioannis Dimolitsas NTUA

Marco Jahn ECLIPSE

Chiara Lombardo CNIT

Document History

Version Date Change editors Changes

0.1 20/11/2023 SMILE (JR) Document initialisation, table of contents,
executive summary

0.2 16/01/2024 SMILE (SM, LN) Added tables content

0.3 23/01/2024 UOM, SMILE Refined content and adjusted status

0.4 30/01/2024 SMILE (SM, LN) Completed tables lists, updated repositories
status

0.5 6/02/2024 SMILE (SM, LN) Additional status updates

0.6 14/02/2024 SMILE Additional status updates

0.7 20/02/2024 NTUA (DS),
SMILE (JR)

Added global infrastructure details and main
components description

Added CI/CD runners platforms

0.8 21/02/2024 NTUA
SMILE (JR, SM,
LN)

Added Dashboards mock-up appendix
Added Conclusion and infrastructure details

Updated repositories list

0.9 27/02/2024 ECL (MJ), NTUA
(DS), SMILE (LN,
JR)

Review. Accepted with minor comments.

Final edits

1.0 28/02/2024 NTUA (AZ, SP) Final version

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 3 of 37

Quality Control

Role Who (Partner short name) Approval Date

Deliverable leader Jonathan Rivalan (SMILE) 28/02/2024

Quality manager Anastasios Zafeiropoulos (NTUA) 28/02/2024

Project Coordinator Symeon Papavassiliou (NTUA) 28/02/2024

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 4 of 37

Table of Contents

Document Information 2

1 Introduction 10

1.1 Purpose of the document 10

1.2 Relation to other project work 10

1.3 Structure of the document 10

2 Single components integration status 11

2.1 Single components status [M18] 11

2.1.1 Reported progress 11

2.1.2 Blind evaluation 13

2.1.3 Exposed APIs 14

2.1.4 Integration and Open Source quality requisites 15

2.1.5 Repositories documentation 16

3 Overall integration status [M18] 18

3.1 Management tools 18

3.1.1 SCMs 18

3.1.2 CI/CD 18

3.2 Available infrastructures 19

3.2.1 Computation and evaluation environments 19

3.3 Features coverage / Integration tests 20

3.3.1 Functional and Unit Tests for VO 20

4 Integration proposal and prototyping 25

4.1 Description of the resulting architecture and packaging 25

5 Documentation 32

5.1 NEPHELE integration bootstrap [M18] 32

5.1.1 Motivations 32

5.1.2 Content 32

5.1.3 Availability 32

6 Conclusions 33

7 Appendix 34

7.1 Dashboard Initial Mock-ups 34

7.2 Development environment 36

8 Bibliography 37

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 5 of 37

List of Tables

Table 1: NEPHELE project’s repositories summarization _______________________________________ 11
Table 2: Language distribution and building and execution status of all repositories ___________________ 13
Table 3: Repositories’ API information ___ 14
Table 4: Integration and Open-Source quality requisites __ 15
Table 5: Integration and Open-Source quality requisites __ 16
Table 6: Source control management___ 18
Table 7: CM with CI/CD available for partners ___ 18
Table 8: Computation and evaluation environments__ 19
Table 9: Integration tests description and status __ 21

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 6 of 37

List of Figures

Figure 1: NEPHELE-Integration: Two CI/CD execution platforms are made available: one for the Docker

applications, one for the Kubernetes applications. ___ 19
Figure 2: NEPHELE infrastructure Setup, the network overlay between partners provided infrastructures is

connected through the Submariner solution. ___ 20
Figure 3: Testing-Methodology: Agile Testing for NEPHELE components/modules. ___________________ 22
Figure 4: Testing-Process: Testing Process for each integrated Module. ____________________________ 23
Figure 5: NEPHELE-Platform-Architecture: The overall applicative platform is managed through a dashboard -

type UI. It supports the orchestration of operations through the Synergetic Meta Orchestrator. ___________ 25
Figure 6: NEPHELE Multi-Cluster Resource Manager technical architecture: At a system level, operational

actions are managed through a mix of APIs, including the native Kubernetes, cli i.e., kubectl. ____________ 28
Figure 7: High-level representation of distributed controller principles: Network control of private and public

clusters is enabled through the public network exposure of both Submariner and Kubernetes interfaces. ____ 29
Figure 8: NFVCL reference architecture - The NBI approach enables a distribution of concerns between the

various logical and physical components of the SDN. Stakeholders can leverage blueprints and topologies to

define fine-grained dynamic network resource configuration and access.____________________________ 30

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 7 of 37

List of Acronyms

Abbreviation /
acronym

Description

API Application Programming Interface

CD Continuous Deployment

CI Continuous Integration

CI/CD Continuous Integration/ Continuous Development

CIDR Classless Inter-Domain Routing

CoAP Constrained Application Protocol

CNCF Cloud Native Computing Foundation

CRD Custom Resource Definition

cVO Composite Virtual Object

Dx.y Deliverable number y belonging to WP x

EC European Commission

GCL Gate Control List

GUI Graphical User Interface

HDA Hyper Distributed Application

HDAR Hyper Distributed Application Repository

HTTP Hypertext Transfer Protocol

IM Information Model

K8s Kubernetes

LwM2M Lightweight M2M

M2M Machine-to-machine

MQTT Message Queue Telemetry Transport

NBI North-Bound Interface

NETCONF Network Configuration Protocol

NFV Network Functions Virtualization

NFVCL NFV Convergence Layer

NFVO NFV Orchestrator

NSI Network Service Instance

OMA Open Mobile Alliance

ONOS Open Network Operating System

PoC Proof of Concept

REST REpresentational State Transfer

TSN Time-Sensitive Networking

SDN Software-Defined Networking

SD-WAN Software-Defined Wide Area Network

SD-WSN Software-Defined Wireless Sensor Networking

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 8 of 37

SMO Synergetic Meta Orchestrator

VO Virtual Object

W3C World Wide Web Consortium

WoT Web of Things

WP Work Package

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 9 of 37

Executive Summary

This document depicts the integration efforts and results towards setting up the NEPHELE components
as an industrialized platform, which deployment, maintenance, and operational management is made
easily understandable, achievable and reproducible.

This document aims to present in a single place multiple aspects of the project integration effort:

- the current functional state at the two milestones [M18, M36] of the NEPHELE prototype
components integration and their resulting APIs

- source code availability and source code management principles
- the associated documentation elements supporting integration within, and usage for, the

resulting platform
- Open-Source quality requirements
- DevOps guidelines

As such, the current document provides knowledge about the collaboration within the partners and WPs
towards a working prototype, and the open-source access to its components, documentation and tests.
Infrastructure-wise, D5.1 provides the full details about made-available resources, from external source
code managers to private CI/CD platforms and project-level evaluation infrastructures and testbeds.

As of the M18 milestone, the NEPHELE integration is comprised of three main results: 1. working
prototypes from all WPs made available publicly through the Eclipse Research Labs Gitlab, 2. CI/CD
integration effort enabling automated builds and test runs, 3. DevOps bootstrap documentation including
code examples and guidelines to support microservices-oriented developments within the project.

Aside from the direct results, prototypes were audited as standalone solutions and their integration
within a single tenant was studied and discussed. A contribution is designed in the form of a
nomenclature, detailing components support for CI/CD, and microservices deployment.

From the first prototypes published in M18, a complete platform prototype seems achievable in the
coming months. The next internal iteration is set on M24.

In conclusion, NEPHELE's integration effort is following the path described initially in the technical
annex. Open-Source results are made available in a DevOps approach, and platform setup is ongoing.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 10 of 37

1 Introduction

1.1 Purpose of the document

This document is aimed at reporting the integration status of NEPHELE components as single
standalone components and as an overall integrated platform. It corresponds to the deliverable D5.1.
Two versions are expected, this initial version at the milestone M18, and another version at the milestone
M36.

The current version M18 pursues the presentation of the first round of the integration effort, the overview
of public repositories and quality-oriented requisites (docker files, tests, licences), made available APIs
and their respective formats, proposed integration tools, and execution platforms. It also depicts
functional blocks at a global architecture level and emphasises over-testing principles.

1.2 Relation to other project work

D.5.1 is meant to report the results in integrating the NEPHELE platform, at various stages of the
developments:

- The first stage includes a first working prototype with part of the WP3-WP4 mechanisms
integrated and is expected by M18

- the second stage includes a full working prototype with all the mechanisms integrated and is
expected by M24

- a third stage release includes all the updates based on feedback received from the project use
cases providers and is expected by M24

1.3 Structure of the document

This document is structured in 6 major chapters and an appendix.

Chapter 1 (the current chapter) and Chapter 6 present the document outline, plan, and outcomes.
Respectively as an introduction chapter and a conclusion one.

Chapter 2 details the integration status. It first provides an overview of project results from the other
WPs and then depicts their integration effort as a single platform.

Chapter 3 details the overall integration support. It depicts the various infrastructures and solutions
provided within the project along with their capabilities (source code management, compute support,
evaluation environments).

Chapter 4 details the standard architecture components. It details functional components as well as their
relations to the platform features and usage.

Chapter 5 details the documentation produced. Documentation is comprised of integration guidelines
for the microservices and open-source results.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 11 of 37

2 Single components integration status

This chapter presents the NEPHELE platform integration status under 2 perspectives. First, an overview
of results as standalone components, second the current state of the overall integration.

2.1 Single components status [M18]

2.1.1 Reported progress

In this section, we introduce the main repositories associated with components of the NEPHELE project,
which are hosted on the Eclipse Research Labs GitLab 1. Specifically, the discussion encompasses
concise descriptions, integration maturity assessments, correlations with the technical annex, authorship
attributions, and pertinent annotations for each repository. The repositories under consideration are VO-
WOT, wot-py-2, nephele-HDAR, VO-LwM2M, VO-Security, VO-TSN, and VO-SDN. This
comprehensive overview aims to offer insights into the foundational facets of these repositories within
the broader context of the NEPHELE project's framework. Table 1 synthesises the results as reported
by the different responsible partners involved in the development and maintenance of these repositories.

Table 1: NEPHELE project’s repositories summarization

Repository

name

Description Integration

Maturity

(Poc/Proto/Final)

Relation to

technical

annex
[WPx-Tx-

Dz]

Partners

involved

Notes

VO-WoT This repository is a fork of the original

WoTPy2 repository. VO-WoT is an
experimental implementation of a W3C

WoT Runtime3 and the W3C WoT

Scripting API4 in Python, inspired by the

exploratory implementations located on

the Thingweb GitHub page5.

In development

-
PoC

WP3

-
T3.1

-

D3.1

NTUA Device

abstraction
based on

W3C-Web

of Things

wot-py-2 This repository is an updated version of

WoTPy. WoTPy is an experimental

asynchronous implementation of a W3C
Web of Things runtime

In development

-

Prototype

WP3

-

T3.1
-

D3.1

Siemens

nephele-
HDAR

This multi-project repository hosts the
commitments of T4.1. Dev environment

and HDAR including Information Model

(IM)of artifacts.

In development
-

Prototype, Beta

version

WP4
-

T4.1

-

D4.1

ATOS

1 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project
2
 https://github.com/agmangas/wot-py

3
 https://github.com/w3c/wot-architecture/blob/main/proposals/terminology.md#wot-runtime

4
 https://github.com/w3c/wot-architecture/blob/main/proposals/terminology.md#scripting -api

5
 https://github.com/thingweb

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 12 of 37

VO-LwM2M Device abstraction based on OMA-

LwM2M standard. The environment
surrounding a Virtual Object (VO) is

multifaceted, encompassing various

components that facilitate its operation

and interaction within the computing

continuum. This section delves into these
primary components, shedding light on

their roles and functionalities.

In development

-
Prototype, Beta

version

WP3

-
T3.1

-

D3.1

CNIT

VO-Security This is a demo for the Security and Trust
processes between objects from the

VOStack. The repository tests the OpenID

Connect for Verifiable Presentations

(OIDC4VP), e.g., the verification of

Verifiable Credentials and the generation
of an Access Token using the Holder,

Verifier and PEP-Proxy components.

In development
-

Prototype

WP3
-

T3.1

-

D3.1

OdinS

VO-TSN

This repo contains a prototype
implementation of a Centralized TSN

control plane for the configuration of

TSN-enabled devices, such as IoT

Gateways and TSN bridges, for low-

latency communication. The TSN control
plane features a TSN schedule engine and

a Gate Control List (GCL) controller.

Communication with the TSN bridges is

established using NETCONF.

In development
-

Prototype

WP3
-

T3.2

-

D3.1

UOM Runs as a
separate

container

and

communicat

es via a
custom

REST API.

VO-SDN

This repository contains the prototype

implementation of Reactive Routing

component of VO stack. Reactive Routing

maintains network connectivity between

wireless IoT nodes and the IoT gateway.
We adopt the Software-Defined Wireless

Sensor Networking (SD-WSN) approach,

which enables dynamic routing

adjustments based on a global view of the

network, e.g., handling routing changes
due to mobility or signal interference.

Furthermore, it provides logically-

centralized and programmable routing

control, allowing easy integration with the

distributed control across the compute
continuum, fostering enhanced network

intelligence and monitoring capabilities.

In development

-

Prototype

WP3

-

T3.2

-

D3.1

UOM Configurabl

e protocols

via a custom

REST API,

also
supporting a

cVO GUI.

VO-
Discovery-

Server

This repository contains the code for the
Discovery Server that will be used to

register Virtual Objects and make them

discoverable.

In development
-

Prototype

WP3
-

T3.1

-

D5.1

NTUA REST API
where VO’s

can be

registered

and

discovered.

SMO This repository contains the code for the

Synergetic Meta-Orchestrator (SMO). The

SMO is a component in the NEPHELE
ecosystem responsible for managing

In development

-

Prototype

WP5

-

T5.1
-

NTUA

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 13 of 37

centralized information about application

deployments and the overall orchestration
of the resources spanning both the

network and the computing domains. The

SMO also interprets user-defined Intent

declarations and constructs a deployment

plan according to the user’s request and
the available resources.

D5.1

NEPHELE-

Dashboard

This repository contains the code for the

NEPHELE Dashboard. The Dashboard is
the front-end of the NEPHELE ecosystem

where developers can construct Hyper

Distributed Applications, deploy and

monitor them.

In development

-
Prototype

WP5

-
T5.2

-

D5.1

NTUA Web

application
operated by

a UI.

NFVCL-NG The NFVCL is a network-oriented meta-

orchestrator, specifically designed for

zeroOps and continuous automation. It

can create, deploy and manage the
lifecycle of different network ecosystems

by consistently coordinating multiple

artifacts at any programmability level

(from physical devices to cloud-native

microservices).

In development

-

Prototype

WP3

-

T3.1

-
D3.1

CNIT Works

through

REST API

calls

2.1.2 Blind evaluation

Within this section, we show the language distribution of each repository constituting the project as well
as their statuses concerning building, working, and relevant notes. Table 2 serves as a comprehensive
presentation of these components, offering insights derived from CLOC (Count Lines of Code) code
analysis, inclusive of details pertaining to build and execution statuses.

Table 2: Language distribution and building and execution status of all repositories

Repository Name Language Distribution

(CLOC)

Build Test Additional notes

nephele-HDAR Go 86.86%

Smarty 11.1%

Python 2.04%

Working Working

VO-LwM2M Java 95.33%
C++ 2.64%

Python 1.67%

PowerShell 0.34%

Dockerfile 0.03%

Working Working

VO-Security Kotlin 81.92%

Python 15.43%

Shell 0.79%

JavaScript 0.64%
Java 0.64%

Working NA

VO-WoT Python 99.49%

Shell 0.29%
Dockerfile 0.19%

Working Working Already few tests in the

repository

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 14 of 37

Makefile 0.03%

wot-py-2 Python 99.46%

Shell 0.38%

Dockerfile 0.16%

Working Working Already few tests in the

repository

VO-SDN GSC 62.7%

Makefile 35.1%

C 1.5%

Dockerfile 0.4%
Shell 0.3%

Working Working

VO-TSN Prolog 93.6%

Python 3.0%

Dockerfile 2.7%
Shell 0.7%

Working Working Tests found in run. Tests

working locally but fail

in a remote setup

VO-Discovery-

Server

NA Under

development

NA

SMO NA Under

development

NA

NEPHELE-

Dashboard

NA Under

development

NA

NFVCL-NG Python 97.0%
Jinja 2.8%

Other 0.2%

NA NA Only APIs test found

2.1.3 Exposed APIs

In the present section, we expound upon the API (Application Programming Interface) details of the
repositories, encompassing their presence, categorization, employed protocols, and access points to
related documentation. Table 3 consolidates and succinctly encapsulates this array of information,
providing a summarised overview of the repositories' API characteristics. The tabulated presentation
aims to furnish a comprehensive reference for stakeholders seeking a clear understanding of the API-
related aspects within the context of the examined repositories.

Table 3: Repositories’ API information

Repository
Name

API API type
(language level, system
level (comm and line),
Web, I/O, single output,

other protocols)

Public / Rest API (is it web
exposable?)

API documentation

nephele-HDAR

No -Web - REST (HTTP) README67

VO-LwM2M Yes - Web
- Other protocols

- REST (HTTP + CoAP)
- MQTT

README8

6
 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/nephele-hdar/-/blob/main/hdar/README.md?ref_type=heads

7
 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/nephele-hdar/-/blob/main/hdar/api/docs/swagger.yaml?ref_type=heads

8
 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-security/-/blob/main/README.md?ref_type=heads

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 15 of 37

VO-Security Yes - Web - REST (HTTP) README9

VO-WoT Yes - Web
- Other protocols

- REST (HTTP + CoAP)
- WebSockets
- MQTT

./docs10

wot-py-2 Yes - Web

- Other protocols

- REST (HTTP + CoAP)

- WebSockets
- MQTT

./docs11

VO-TSN Yes - Web - REST (HTTP) ./documents12

VO-SDN Yes - Web - REST (HTTP) ./docs13

VO-Discovery-
Server

NA NA NA NA

SMO NA NA NA NA

NEPHELE-
Dashboard

NA NA NA NA

NFVCL-NG Yes - Web - REST (HTTP) http://NFVCL_IP:5002/docs

2.1.4 Integration and Open Source quality requisites

This section explores the integration and open source quality requisites associated with the repositories
within the NEPHELE project. Our investigation focuses on determining the repository's support for
Docker, its capability for Continuous Integration/Continuous Deployment (CI/CD), and the necessity
for dependency management. Additionally, we elucidate the type of testing employed and the
repository's open-source licensing. Table 4 provides a succinct summary of the available assets at a
repository level that contribute to the facilitation of DevOps, integration processes, and fulfilment of
open source-oriented requisites.

Table 4: Integration and Open-Source quality requisites

Repository
name

Dockerfile Available
tests

Tests CI/CD Dependency
Management

Licence

VO-WoT Yes Functional Yes Smile Runners No MIT License

wot-py-2 Yes Functional Yes Smile Runners No MIT License

nephele-

HDAR

Yes Functional Yes GitHub

workflow,
Smile Runners,

Eclipse runners

Yes

(go.mod)

Apache License

VO-LwM2M Yes Functional Yes Smile Runners No MIT License

9
 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-security/-/blob/main/README.md?ref_type=heads

10
 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-wot/-/tree/main/docs?ref_type=heads

11
 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/wot-py-2/-/tree/main/docs?ref_type=heads

12 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-tsn/-/tree/main/documents?ref_type=heads
13

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-sdn/-/tree/main/docs?ref_type=heads

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 16 of 37

VO-Security Yes NA Yes Smile Runners

Yes

(pytz==2019.2)

Apache License

VO-TSN Yes Functional Yes Smile Runners Yes

(requests~=2.31.0,

lxml~=4.9.3)

MIT License

VO-SDN Yes Functional Yes Smile Runners No MIT License

VO-Discovery-

Server

NA NA NA NA No MIT License

SMO NA NA NA NA No MIT License

NEPHELE-

Dashboard

NA NA NA NA No MIT License

NFVCL-NG NA NA NA NA Yes

(OpenStack

instance,

Ubuntu (22.04 LTS)

instance,
OSM 14,

Python 3.11)

NA

2.1.5 Repositories documentation

This section shows the resources of documentation for repositories regarding their installation and usage
guides. The investigation aims to ascertain the accessibility and comprehensiveness of documentation
for each repository. Table 5 summarises the availability for each repository of installation
documentation and usage documentation.

Table 5: Integration and Open-Source quality requisites

Repository name Installation Documentation Usage documentation Notes

VO-WoT Yes (Readme14) Yes (Readme15)

wot-py-2 Yes (Readme16) Yes (Readme17)

nephele-HDAR Yes (Readme18) Yes (Readme19)

VO-LwM2M Yes (Readme20) Yes (Readme21)

14

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-wot/-/blob/main/README.md?ref_type=heads
15

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-wot/-/blob/main/README.md?ref_type=heads
16

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/wot-py-2/-/blob/main/README.md?ref_type=heads
17

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/wot-py-2#development
18

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/nephele-hdar/-/blob/main/README.md?ref_type=heads

19 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/nephele-hdar/-/blob/main/README.md?ref_type=heads
20

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/nephele-hdar/-/blob/main/README.md?ref_type=heads

21 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-lwm2m/-/blob/main/README.md?ref_type=heads

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 17 of 37

VO-Security Yes (PEP-Proxy/Readme22) Yes (Readme23)

VO-TSN Yes (Readme24) Yes (Reame25 & /agent/Readme26)

VO-SDN Yes (Readme27) Yes (Readme28)

VO-Discovery-Server Yes (Readme29) Yes (Readme30)

SMO Yes (Readme31) Yes (Readme32)

NEPHELE-Dashboard Yes (Readme33) Yes (Readme34)

NFVCL-NG Yes (Readme35) Yes (Readme36)

22

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-lwm2m/-/blob/main/README.md?ref_type=heads
23

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-security/-/blob/main/README.md?ref_type=heads
24

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-tsn/-/blob/main/README.md?ref_type=heads
25

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-tsn/-/tree/main/schedulerSRC?ref_type=heads
26

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-tsn/-/tree/main/agent?ref_type=heads
27

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-sdn/-/blob/main/README.md?ref_type=heads
28

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-sdn/-/blob/main/README.md?ref_type=heads
29 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-discovery-server/-/blob/main/README.md?ref_type=heads
30 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-discovery-server/-/blob/main/README.md?ref_type=heads
31 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/smo/-/blob/main/README.md?ref_type=heads
32 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/smo/-/blob/main/README.md?ref_type=heads
33 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/nephele-dashboard/-/blob/main/README.md?ref_type=heads
34 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/nephele-dashboard/-/blob/main/README.md?ref_type=heads
35

 https://github.com/s2n-cnit/nfvcl-ng/blob/master/README.md
36

 https://github.com/s2n-cnit/nfvcl-ng/blob/master/README.md

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 18 of 37

3 Overall integration status [M18]

3.1 Management tools

3.1.1 SCMs

In this section, we provide the overview of the source control management (SCM) options available for
hosting the repositories within the NEPHELE project. The focus is on detailing the platforms designated
for SCM and provided to project partners. Table 6 depicts available SCMs platform accessible to the
project's collaborators.

Table 6: Source control management

Platform Access Gitlab-CI support Notes

Gitlab (ZHAW) Private No Meant for holding internal
documentation

Gitlab (ECLIPSE) Public Yes Meant for holding open

source repositories

3.1.2 CI/CD

This section presents an overview of the available SCM solution used in the execution of the repositories
within the NEPHELE project, specifically within the context of CI/CD processes. Table 7 depicts
available CI/CD solutions provided to project partners.

Table 7: CM with CI/CD available for partners

Platform Access Gitlab-CI support Notes

Gitlab (ECLIPSE) Public Yes Meant for holding open

source repositories

Gitlab (SMILE) Private Yes Used as a remote alternative

CI/CD provider

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 19 of 37

Figure 1: NEPHELE-Integration: Two CI/CD execution platforms are made available: one for the
Docker applications, one for the Kubernetes applications.

3.2 Available infrastructures

3.2.1 Computation and evaluation environments

In this section, we show the overview of the available environments dedicated to computing and
evaluating the repositories within the NEPHELE project. Table 8 depicts available infrastructures for
computational and evaluative purposes.

Table 8: Computation and evaluation environments

Platform Access Availability Provider Notes

CI/CD Runners Private M18 SMILE

CI/CD Runners Private M18 ECLIPSE

CI/CD Runners Local NA Partners Gitlab-CI can support

runners provided by

users.

Micro-services platform

(components execution)

Private M18 SMILE K8S Cluster (1

controller 2 worker

nodes):

amd64/linux
4 cores, 2.4 GHz

8 GiB, 50 GB

Docker Executor:

amd64/linux
4 cores, 2.4 GHz

8 GiB, 50 GB

Micro-services platform

(VO applications execution)

Private / Public M18 SMILE K8S (3 nodes)

NEPHELE infrastructure

(applications execution)

Private M18 NTUA OpenStack Platform

72 vCPUs, 234 GiB

Micro-services platform

(components execution)

Private/Public M18 UOM K8S (1 master - 2

worker nodes w/ 4GB

RAM and 4vCPUs)

Micro-services platform for

network management

(components execution)

Private/Public M18 CNIT OpenStack Platform

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 20 of 37

Figure 2: NEPHELE infrastructure Setup, the network overlay between partners provided

infrastructures is connected through the Submariner solution.

In Figure 2 we depict the NEPHELE testbed on which Hyper Distributed Application Graphs can be
instantiated. More specifically the testbeds between CNIT are connected through an OpenVPN tunnel.
Kubernetes clusters are hosted on each testbed with the interconnection being achieved through the use
of Submariner that handles the exposing of services across clusters. Karmada has been selected to
orchestrate application graphs across multiple clusters propagating all the necessary resources to the
desired cluster(s). The NFVCL component hosted on the CNIT testbed is part of the Network Manager
of the infrastructure and handles Kubernetes cluster creation. Lastly, the Synergetic Meta-Orchestrator
supervises and orchestrates the communication between the various components of the infrastructure.

3.3 Features coverage / Integration tests

This section presents a comprehensive overview of the integration tests associated with the NEPHELE
project. The discussion encompasses detailed descriptions and statuses of the integration tests. Table 9
depicts overall integration tests.

3.3.1 Functional and Unit Tests for VO

The existing tests for the Virtual Object (VO) functionality can be divided into the following categories
as presented in the below table.

These tests check the message exchange between client/server objects for the specific protocol. The tests
include checking the message flows, states, proper protocol attribute values, and payload exchange. The
tests can also be run against these Python versions 3.8, 3.9, 3.10, 3.11.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 21 of 37

Table 9: Integration tests description and status

Test Category Description Related components Status Notes

Communication
protocol: coap

These tests check the
message exchange

between client/server

objects for the specific

protocol. The tests

include checking the
message flows, proper

protocol attribute

values, and payload

exchange.

Client/server Implemented

Communication

protocol: http

Client/server Implemented

Communication

protocol: mqtt

Client/server Implemented

Communication
protocol: WebSocket

Client/server Implemented

Test all protocols Checks Protocol

bindings work as

expected when
multiple servers are

combined within the

same Servient

Client/server Implemented

Json codec This category asserts

the proper
serialisation and

deserialization of

codec objects from

json files in the forms

of Unicode, byte and
dictionary

Json codec Implemented

Thing functionality Tests for checking
client subscriptions to

property change

events, event

emissions and actions,

writing properties and
proper interaction

through the map-like

interface

Thing Object Implemented

Consumed Thing

functionality

Consumed Thing

Object

Implemented

Exposed Thing

functionality

Exposed Thing

Object

Implemented

Servient functionality Tests for creation and
manipulation of

catalogues of things

and interaction with

things

Servient Object Implemented

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 22 of 37

Thing Description

(TD) functionality

Tests for creation and

manipulation of Thing

Description objects

and interaction with

Things and TD
documents

Thing Description

Object

Implemented

Testing Methodology

Regarding the integration and testing/piloting phases a two-phased approach will be applied with respect
to the pilots running.

The methodology that is considered to be followed, is the agile testing, as depicted in Figure 3. Briefly,
this methodology considers testing and development as two intertwined phases and not sequential (i.e.
testing following development).

With respect to the practical, separate, and integrated module testing, as proposed in [2], in Figure 3 we
see a generic perspective of the integration, testing, and validation processes, which will be adopted by
the NEPHELE team for the modules that will be integrated to produce the final NEPHELE platform
(the numbers refer to steps, as described below, after the figure):

Figure 3: Testing-Methodology: Agile Testing for NEPHELE components/modules.

According to this generic methodology, our plan is composed of the following major steps:

1. Individual unit testing.
2. Integration of individual units to implement the NEPHELE platform.
3. Validation test of the integrated platform against the requirements.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 23 of 37

4. Integration of the NEPHELE platform with PoCs
5. First PoC phase of integrated NEPHELE platform
6. Feedback to developers and implementation of corrective measures – quick individual unit

testing against reported problems.
7. Integration of new individual unit modules.
8. Second round of final platform testing.

In Figure 4 we see the testing process for each integrated module:

Figure 4: Testing-Process: Testing Process for each integrated Module.

With respect to system testing, there are generally two main methodologies: (i) Incremental testing, and;
(ii) Non-incremental testing. We, briefly, discuss these two methodologies in what follows and state,
with justification, our adoption decision. In the context of our description, the term low-level component
refers to self-contained modules that perform a specific, relatively simple, computation and the term
high-level component refers to modules that perform more complex operations and require other
modules for their operation.

1) Incremental system integration

● Top-down testing: This approach requires the integration and testing to start from the highest-
level components. This enables the testing of high-level system parts and the involved data
flows and interfaces. This approach, usually, minimises the need for drivers, i.e. test modules
that invoke others, since most modules are in place (at least the high-level ones). However, since
lower-level modules are missing, stubs are necessary (perhaps numerous) to feed with inputs to
the higher-level component which is under testing, until the real lower-level components
become available. In addition, the lower-level components are tested late in the integration
phase leaving limited time for system-level corrective actions. The exact forms and functionality

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 24 of 37

of the stubs and drivers, since they form very low code-level components of the testing phase,
depend heavily on the actual code of the tested modules, which is not available at the time of
the writing of this deliverable, and will be decided later by the involved partners.

● Bottom-Up testing: Contrary to top-down testing, this testing strategy starts from the lower-
level system components. This, also, minimizes the need for stubs and identifies low-level
problems early, before the integration begins. However, more drivers are needed to invoke,
appropriately, the lower level components because the higher level components (which invoke
the lower level ones) are missing.

● Sandwich Testing: This is also called Hybrid Integration Testing, and combines the two
approaches discussed above. According to this approach, lower-level modules are tested in
parallel, while their integration also proceeds along with testing and is tested itself too.
Accordingly, the need for stubs and drivers is minimized. However, this approach is a little less
systematic than the top-down and bottom-up approaches and may need more coordination
effort.

2) Non-Incremental system testing:

● Big-bang testing: In this approach, all (or a large portion) of the modules that compose the
system are integrated and tested. According to this testing methodology, the testing starts from
the final system and not the individual components level. However, in this testing strategy, if
an erroneous behavior is detected while a test is performed, it is very difficult to isolate the
components that fail and lead to this kind of behavior, since attention is not p aid to the
component operation or component interface level during the testing.

After consideration of these options, the development teams are opting for the “sandwich approach”.
This methodology is deemed more suitable, due to the fact that partners, in parallel, develop their own
modules according to the specifications set in the architecture deliverables (most notably D2.2). Thus,
the module developers use the bottom-up approach to test their low-level modules and then Task T5.1
(the platform integration task) uses the bottom-up approach to follow and support the piloting phases.

Moreover, the selected testing methodology will utilize the CI/CD paradigm, which facilitates the
automation of testing stages, by incorporating them in CI/CD pipelines enabling to speed up the testing
procedure into a standardized repetitive cycle. This cycle facilitates the faster finding of possible bugs
and faster delivery of SW in general.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 25 of 37

4 Integration proposal and prototyping

4.1 Description of the resulting architecture and packaging

Figure 5: NEPHELE-Platform-Architecture: The overall applicative platform is managed through a
dashboard-type UI. It supports the orchestration of operations through the Synergetic Meta

Orchestrator.

The architecture of NEPHELE was initially presented in deliverable D2.1 “Requirements, Use Cases
Description and Conceptualization of the NEPHELE Reference Architecture” in month 9 and updated
in its final version in deliverable D2.2 “NEPHELE Reference Architecture Final Specification” in month
18. In this section we provide a short description of the NEPHELE architecture as illustrated in Figure
5, to facilitate the presentation of the initial version of the first integrated NEPHELE Platform.

The overall architecture incorporates multiple components that interact with each other to achieve the
desired functionality. The NEPHELE Dashboard is composed of a front-end website that is interactable
and allows the deployment of Hyper Distributed Applications and a Python back-end that interfaces
with and makes calls to other components. Also, an SQL database is used to store information related
to application deployments. Before application deployment, the developer uses the development
environment to create software artifacts of the packaged applications that are then pushed to a
Distribution OCI registry. The back-end of the NEPHELE dashboard is able to communicate with the

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 26 of 37

OCI artifact registry to fetch artifact information as well as with the SMO to enforce deployment plans.
The SMO creates deployment plans by sending requests to both the NFVCL Network Manager and the
Karmada Mutli-Cluster Manager. After instantiation, inter-cluster communication is achieved with the
Submariner tool that seamlessly allows service discovery across clusters.

SMO:
The Synergetic Meta Orchestrator (SMO) is a layer that oversees the deployment of Hyper Distributed
Application Graphs by orchestrating and communicating with the various other layers of the architecture
to create and propagate a deployment plan. More specifically the SMO is tasked with receiving a Hyper
Distributed Application Graph descriptor with the specification of the application graph along with an
Intent formulation describing the desired application performance levels and constraints. The SMO
interfaces with the Network Manager and the Multi-Cluster Manager to make network-related and
infrastructure-related decisions respectively. Moreover, the SMO translates the given Intent into
enforceable deployment plans leveraging the information provided by the Network and Multi-Cluster
Managers as mentioned previously. The SMO is currently under development and we will use a Flask
framework to build the necessary Rest API for communication with all other components. All
mechanisms described in Deliverable D2.2 and D4.1 will be included as backend mechanisms here.

Dashboard:
The NEPHELE Dashboard is a developer-facing frontend of the NEPHELE project allowing the
interaction with the underlying infrastructure and the deployment of Hyper Distributed Applications.
The Dashboard is currently under development using Vue.js as frontend and Python Flask as backend.
The developer can create Hyper Distributed Application Graphs by combining various application
components that use already created artifacts hosted on a Hyper Distributed Application Registry.
Afterward, the developer can request the deployment of the created Graph which forwards the request
to the SMO constructing and enforcing a deployment plan. Moreover, the dashboard can be used to
monitor the deployment of the graph and view metrics related to its performance. To ensure that the
Thing Description JSON files provided by the developers are valid a validator has been used whose
JSON schema can be found here37. The validator ensures that during the deployment of the VO, the
given Thing Description is valid. Sample Mockups of the NEPHELE dashboard and a description of the
functionalities can be found in the Appendix section of this deliverable.

Development Environment:
It is the developer-facing component of the NEPHELE project’s architecture. Apart from the
development sandbox built directly over GitLab, there is the need to develop and deploy a system that
takes care of the storage, distribution, and verification of all the artifacts produced by the developer. The
HDA Registry is a system that is built following a micro-service architecture combining and extending
functionalities around the official OCI Registry microservice (distribution38). Regarding the artifacts,
two contributions have been addressed. First, the NEPHELE-specific developer CLI (hdarctl) was
developed to interact with the HDAR in a similar way as other CLI tools from the CN ecosystem (Helm,
docker). Second, the HDAR is a system deployed in K8s along with the rest of the platform component,
which provides a verification pipeline that ensures the correctness and integrity of the artifacts, not only
based on the syntax and composition of files but also based on the semantic validation of the different
links and values in the descriptors. From the perspective of the NEPHELE platform, the HDAR exposes

37

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-wot/-/blob/8418e272dc8e7719bb0568d9e89cc5f0455dd6a6/wotpy/wot/validation.py

38
 https://github.com/distribution/distribution

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 27 of 37

a series of custom REST APIs that aim to assist with the artifact handling needs of other components,
mainly the Dashboard. The available swagger is continuously updated here 39.

Multi-Cluster Resource Manager (Karmada):

The Multi-Cluster Resource {Manager/Orchestrator} component within the NEPHELE ecosystem
manages multiple (Kubernetes) clusters across diverse environments and providers, offering a
centralized and unified interface for administration and operation. This centralized control simplifies the
management process, reduces the complexity of handling disparate systems, and minimizes the potential
for errors, enhancing overall efficiency. This level of orchestration enables scalability, resilience, and
cross-environment compatibility. Among the available multi-cluster resource {managers/orchestrators},
Karmada is one of the best candidates. As an open-source project under the Cloud Native Computing
Foundation (CNCF), Karmada ensures transparency and flexibility. Also encourages widespread
adoption and community-driven enhancements. Being part of the CNCF, Karmada benefits from a
robust ecosystem, contributing to its credibility and the assurance of continued evolution and support.

Karmada Architecture:

Karmada orchestrates (Kubernetes) clusters by leveraging a comprehensive suite of components
designed for efficient multi-cluster management across diverse environments. The architecture includes
the Karmada-Apiserver which serves as the gateway to the Karmada control plane, offering
compatibility with the Kubernetes API. The Karmada-Aggregated-Apiserver extends the Kubernetes
API to manage and access resources across multiple clusters. The Kube-Controller-Manager and
Karmada-Controller-Manager manage standard and custom resources across member clusters. The
Karmada-Scheduler optimizes resource distribution across clusters based on scheduling constraints.
Karmada-Webhook components enforce custom policies through request validation and modification.
Add-ons like the Karmada-Scheduler-Estimator and Karmada-Descheduler refine scheduling accuracy
and resource allocation, while Karmada-Search offers global search capabilities across the clusters. CLI
tools such as karmadactl and kubectl provide command-line management options, streamlining cluster
administration and policy application. Clusters can join the multi-cluster in both Push or Pull modes,
with Push mode directly connecting Karmada to the cluster's Kube-Apiserver, while Pull mode employs
Karada-Agent within the cluster as the mediator between Karmada and the cluster. The overall
architecture is visualized in the following Figure 6:

39

 https://nephele-platform.netmode.ece.ntua.gr/hdarapi/swagger/index.html

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 28 of 37

Figure 6: NEPHELE Multi-Cluster Resource Manager technical architecture: At a system level,
operational actions are managed through a mix of APIs, including the native Kubernetes, cli i.e.,

kubectl.

Inter-Cluster communication:

Karmada uses Submariner to enable direct networking between Pods and Services across different

Kubernetes clusters. It's designed to be network plugin agnostic, ensuring broad compatibility and

seamless operation within the Kubernetes ecosystem. Submariner's architecture includes several core

components that work together to facilitate this connectivity:

● Gateway Engine: This is deployed in each participating cluster and manages the establishment

of secure tunnels between clusters for direct pod-to-pod and service-to-service communication.

● Broker: Serves as a central information exchange hub for clusters, handling the distribution of

connectivity meta-data and service discovery information.

● Service Discovery (Lighthouse): Enables the discovery of services across cluster boundaries,

making it possible for services in one cluster to find and communicate with services in other

clusters.

● Globalnet Controller: Provides a solution for overlapping CIDRs between clusters by ensuring

that cross-cluster communication is possible even when IP address spaces conflict. Karmada is

not compatible with Globalnet.

● Network Plugin Syncer: Ensures that the network configuration is consistent across clusters,

adapting to the specific requirements of different network plugins.

● Route Agent: Facilitates the routing of cross-cluster traffic by configuring the necessary routes

on each node in participating clusters.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 29 of 37

For inter-cluster communication, Submariner utilizes the ServiceExport and ServiceImport Custom

Resource Definitions (CRDs) to specify which services should be made available across clusters. The

ServiceExport CRD is used to mark a service for export to other clusters, while the ServiceImport CRD

represents an imported service in a consuming cluster, enabling seamless service discovery and

connectivity across the multi-cluster environment. The overall architecture of Submariner is visualized

in the following image:

Figure 7: High-level representation of distributed controller principles: Network control of private
and public clusters is enabled through the public network exposure of both Submariner and

Kubernetes interfaces.

Network Resource Manager (NFVCL):

The NFVCL is a network-oriented meta-orchestrator, specifically designed for zeroOps and continuous
automation. It can create, deploy, and manage the lifecycle of different network ecosystems by
consistently coordinating multiple artifacts at any programmability level (from physical devices to
cloud-native microservices).
A network ecosystem is meant to be a completely functional network environment, such as a 5G system,
an overlay system for network cybersecurity, or a simple application service mesh.
For their nature, these environments are realized through heterogeneous Network Functions (xNFs –
i.e., Physical NF, Virtual NF, and cloud-native Kubernetes NF), which are usually to be realized over
highly distributed infrastructures.
As defined in the ETSI NFV standard, xNFs are managed by the NFVO through end-to-end Network
Service Instances. Every Network Service can include one or more xNF instances, and it is meant to be
deployed over a single geographical facility, which may correspond to a computing facility and/or a
physical device (e.g., a gNodeB, an O-RAN Radio Unit, a P4 switch, etc.).
The key feature of the NFVCL is process automation (ZeroOps): when a blueprint is instantiated (Day0-
1), it does not need interaction with the user, a description of the topology template and initial
configuration parameters are sufficient for a blueprint to be deployed. This feature also includes post-
initialization configuration (Day2) and blueprint deletion (DayN). The relevant live documentation and
swagger can be found here40.

40

 https://nfvcl-ng.readthedocs.io/en/latest/index.html

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 30 of 37

Figure 8: NFVCL reference architecture - The NBI approach enables a distribution of concerns
between the various logical and physical components of the SDN. Stakeholders can leverage

blueprints and topologies to define fine-grained dynamic network resource configuration and access.

Virtual Object:

The Virtual Object (VO), is the virtual counterpart of IoT devices deployed on the premises of
Edge/Cloud Clusters. The VO is a lightweight software stack41, based on two different specifications,
i.e., W3C Web of Things42 and OMA LwM2M43, that stores the necessary information produced by IoT
devices and therefore acts as a broker between the devices and an application graph. In NEPHELE we

41

 https://netmode.gitlab.io/vo-wot/

42
 https://www.w3.org/WoT/

43
 https://technical.openmobilealliance.org/index.html

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 31 of 37

maintain and develop two different repositories with live documentation for each specification.
Complete versions will be delivered in D3.2 on Month 24. The Web of Things repo can be found here 44
(documentation available here45), while the OMA LwM2M is here46.

44

 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-wot

45
 https://netmode.gitlab.io/vo-wot/

46
 https://gitlab.eclipse.org/eclipse-research-labs/nephele-project/vo-lwm2m

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 32 of 37

5 Documentation

5.1 NEPHELE integration bootstrap [M18]

5.1.1 Motivations

Considering microservices-oriented development and later deployment, more than one approach can be
chosen from research and development teams. These various approaches may bring specifics within the
project toolkit, limiting or delaying the seamless integration effort between partners.

To unify the development effort, while supporting non-experts in providing their results towards
integration, a specific bootstrap documentation has been conceived. It is aimed to provide information
about microservices development and CI/CD usage while exposing integration-related technical choices
to the consortium discussion.

It has been delivered at M18.

5.1.2 Content

The integration bootstrap documentation is made of a git repository, holding:

- text documentation
- code examples

The documentation is split into two main parts: CI/CD principles and configuration means, and
microservices development and packaging. The first part is meant for users not aware of the possibility
of hosting CI/CD operations configuration along the source code management, within the Gitlab
platform. A working example of a gitlab-ci.yml file is provided along with documentation for its
structure. The second part holds techniques and approaches to ease microservices build and deployment,
notably packaging as a single image or as an operator.

Code is meant to support documentation over demonstrating builds and tests ran within the CI/CD
pipelines. Files assets are made available to showcase microservices build, locally and remotely, and
tests, through two frameworks, Robot framework and Gherkin, enabling functional testing.

5.1.3 Availability

The NEPHELE integration bootstrap is made available over the project's private Gitlab platform under
an MIT-free software license.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 33 of 37

6 Conclusions

Halfway into the NEPHELE project duration, public, open source, achievements can be observed,
evaluated, and measured. The main architectural components supporting the deployment and execution
of VOs, one of the core technical innovations proposed in the project roadmap, are made available with
their relevant documentation and test suites.

Continuous integration has been set for all the public code repositories with respect to the DevOps best
practices. Continuous deployment is being discussed along with the provision of project-dedicated
infrastructures.

A standard architecture, enabling the integration of individual results within a single platform prototype
is proposed. The main existing and upcoming functional blocks are detailed.

Information held in this document will be used as a follow-up base to report and share the various
integration levels' statuses. Some aspects may contribute to the development or the improvement of
architectural components, such as tests, guidelines, and quality constraints.

As of the M18 milestone, future steps are oriented towards adding up iteratively newly developed
components as well as their overall integration support. The resulting status will in turn be depicted to
provide at M24 and M36 a clear understanding of the NEPHELE platform integration achievement, in
terms of maturity, infrastructure(s) deployment, and functional support.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 34 of 37

7 Appendix

7.1 Dashboard Initial Mock-ups

The landing page serves as
the landing page of the
NEPHELE Dashboard where
users can authenticate
themselves and log into the
dashboard.

The home page allows the
user to navigate the various
pages of the dashboard and in
particular the Software
Artifacts, the Development
Environment, the
Infrastructure and the
Operations pages. These
pages are explained below.

The software artifacts pages
list all the various Software
Artifacts that are available on
the platform. These include
the Virtual Objects, the
Composite Virtual Objects,
the Application Components
and the Application Graphs.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 35 of 37

This view of the Software
artifacts page shows a list of
available VOs where more
information about the
Descriptor files or the used
Image file can be requested.

This page shows a listing of
Application Graphs. An
Application Graph’s
descriptor can be viewed and
edited while more
information can be solicited
including a Visualisation of
the Graph.

The Infrastructure page lists
all the underlying
Infrastructure components
including information about
their specifications, location
and their availability.

Mockup in construction. The Operations page includes
a list of the instantiated
application graphs and
VOs/cVOs along with a
Grafana view showing live
metrics about these
deployments.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 36 of 37

7.2 Development environment

The Development
Environment contains
information and instructions
on how to package software
artifacts and push them to the
Hyper Distributed
Application Registry.

Document name:
D5.1 First Release of NEPHELE Platform, Dashboard and
DevOps Environment Setup

Page: 37 of 37

8 Bibliography

[1] L. Crispin and J. Gregory. Agile Testing: A Practical Guide for Testers and Agile Teams. Addison-
Wesley Professional, 2009.

[2] G.J. Myers and C. Sandler. The Art of Software Testing. Wiley, 3rd Edition, 2011.

[3] R. Pressman and B. Maxim. Software Engineering: A Practitioner’s Approach. McGraw-Hill
Education, 8th Edition, 2014.

