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Rise of Al and SoA Model Complexity

"  Ever-increased use of Artificial Intelligence
Hﬁ?ﬁﬁf’ ARTIFICIAL INTELLIGENCE MARKET SIZE, 2021 T0 2030 (USD BILLION) [1]

"  Ever-increased complexity of deployed s
models in terms of: e

[ . $599.17

Computation —
u Memory §227.48 =
" Storage $119.78 iy
§87.04
" E.g., GPT-3 =175B parameters
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Prohibitive for end-user to support Inference

[1] https://www.precedenceresearch.com/artificial-intelligence-market
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IMLaas for DL Inference

= Cloud “as a solution” to the resource wall challenge of DL inference

Inference takes 90% of total infrastructure cost [1]

6 Serves tens-of trillions inference tasks a day [2]

= To further exploit the trend MLaa$S was introduced

- End-user provide pre-trained model along with throughput-/latency- QoS

o) / il
a2kr & H
o

IBM Watson’ vertex.ai

Amazon SageMaker Azure Machine Learning

[1] “Deliver high performance ML inference with AWS Inferentia.” https://d1.awsstatic.com/events/reinvent/2019/REPEAT 1 Deliver high performance ML inference with AWS
Inferentia CMP324-R1.pdf. Accessed: 04-03-2023.

[2] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, et al., “Applied machine learning at Facebook: A datacenter
infrastructure perspective,” in 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 620—629, IEEE,2018.
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MLaaS Challenges

MLaa$S Challenges

Resource Interference Model Variants

Diverse QoSs/SLOs

Guarantee the user-defined QoS/SLO requirements and maximize resource efficiency
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Inference Serving Testbed

"  HW/SW Infrastructure

= 2 VMs serving as master and worker of a Kubernetes cluster

VM vCPUs RAM
Master 4 8 GB
Worker 8 16 GB

" Inference Engine Workloads
* Image classification + Object detection inference engines from MLPerf [1]

" Synthetic Interference

*  Microbenchmarks that stress CPU, L2/L3 cache and memory bandwidth/capacity from iBench
[2]

[1] V. ). Reddi et al., “MLPerf Inference Benchmark,” 2019
[2] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for datacenter applications,” in 2013 IEEE international symposium on workload characterization (1ISWC),
pp. 23-33, IEEE, 2013.
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Characterizing Inference Serving

" Quantify the impact of the following to inference engine performance

"  Different model representation backends i.e., TensorFlow, ONNX Runtime
" Vertical/Horizontal scaling
|

Interference
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Isolated Execution

Q1: How do different model variants for the same task behave in terms of performance?

ONNX-resnet50 TF-resnet50 ONNX-mobilenet TF-mobilenet
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TF-MobileNet 4.6x higher QPS than TF-ResNet50

No clear dominance of TensorFlow over ONNX Runtime and vice versa



Isolated Execution

Q2: How does vertical scaling (i.e., #Threads) of resources affect performance?

g ONNX-resnet50 TF-resnet50 ONNX-ssd-mobilenet TF-ssd-mobilenet
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#Threads = 8 compared to #Threads =1
2.8x higher QPS on average for ONNX Runtime

3.8x higher QPS on average for TensorFlow



Isolated Execution

Q3: How does horizontal scaling (i.e., #Workers) of resources affect performance?

ONNX-resnet50 TF-resnet50
SN VEN 44 45 50 55.253.954.1 53.7
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TensorFlow not affected due to CPython’s GIL

ONNX Runtime presents a 14% QPS drop on average



Execution under Interference

Q4: How does resource interference affect the performance of the inference engines?

ONNX-ssd-mobilenet TF-ssd-mobilenet TF-ssd-mobilenet-QF T TF-ssd-mobilenet-SQFT
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#iBench = 16 on Object Detection

11.7x lower QPS on average stressing CPU

12.5x lower QPS on average stressing Memory BW




Execution under Interference

Q5: Do different backends reveal different performance sensitivity w.r.t resource interference ?

Image Classification

Interference
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ONNX-ResNet50 1.5x higher QPS than TF-ResNet50
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TF-SSDMobileNet 2.5x higher QPS than ONNX-SSDMobileNet



Execution under Interference

Q6: How do different resource allocations affect the performance of the inference
engines under the presence of interference?

ONNX Runtime TensorFlow
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IRIS Design

" Based on our observations we design IRIS, an interference- and
resource-aware predictive orchestration methodology

Identifies interference effects by exploiting low-level performance events
Provides accurate performance predictions

Automatically applies horizontal/vertical scaling policies and chooses the
appropriate model variant
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IRIS Design — Offline Phase

Training Dataset Formation, ML
Model Selection and Tuning

Random Scenario Execution

Random Random ML Model :®’
Interference Parallelism Level Pool :

| ' [ ] 2d]
Y argeais @ Training Dataset ®T l

Inference Engine Formation Model
—QPS—)(:) :
Monitoring Evaluation

T réBest Model J

Model Training

Inference Engine

. Model (2f Optimized QPS
Continuous System-Level Parameter Prediction Model
Monitoring Metrics @ Tuning
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IRIS Design — Online Phase

QPS Prediction & Parallelism

Server Metrics Collection

Level Selection
=
(1]
- . @ Form Test @ e e !
o Run-time Dataset % € | Inference Engines:
0 Monitoring @ of Target Ta.u.sk .
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[e) Average Metrics per Faraflelism that satisfies
o Accumulation — QoS
(J) prior to
20 Deployment Sort per CPU
|r—° utilization
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= We evaluate IRIS approach using:
* different interference scenarios of varying intensity

* different QoS constraints per inference engine (Low, Medium, and High)

= The model-less version of IRIS is compared with:
* All the interference-aware model-specific IRIS schedulers
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Evaluation — Model-less (Image Classification)

I ONNX-resnet50 [TF-resnet50 [ Modelless
I ONNX-mobilenet ] TF-mobilenet [___] T-mobilnet-Q
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57.6% less QoS violations on average compared to
model-specific schedulers
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Evaluation — Model-less (Object Detection)

I Vodelless [ ONNX-ssd-mobilenet I TF-ssd-mobilnet
[ TF-ssd-mobilenet-QFT [__] TF-ssd-mobilenet-SQFT

QoS violations

average CPU utilization

15 25 35
QoS constraint

QoS constraint: 15 QoS constraint: 25 QoS constraint: 35

|

23.9% less QoS violations on average compared to
model-specific schedulers

34.2% CPU utilization on average

1.4x, 1.8x, and 1.5x higher QPS for Low, Medium, and
High QoS constraint on average




Conclusion

" We presented IRIS an interference- and resource-aware predictive
scheduling framework for ML inference serving

" Guarantees the application-specific QoS constraints while minimizing resource

utilization

" The model-less feature achieves:
®= 1.5x fewer violations on average compared to model-specific

" =30% less CPU utilization on average compared to model-specific
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