
IRIS: Interference and Resource Aware Predictive Inference 
Serving on Cloud Infrastructures

IEEE International Conference on Cloud Computing 2023

Α. Ferikoglou, P. Chrysomeris, A. Tzenetopoulos, E. Katsaragakis, D. Masouros, and D. Soudris

Microprocessors and Digital Systems Laboratory, ECE, National Technical University of Athens (NTUA), Greece

{aferikoglou, pchrysomeris, atzenetopoulos, mkatsaragakis, demo.masouros, dsoudris}@microlab.ntua.gr

4/7/2023



Dimosthenis Masouros

Rise of AI and SoA Model Complexity

▪ Ever-increased use of Artificial Intelligence

▪ Ever-increased complexity of deployed 

models in terms of:

▪ Computation

▪ Memory

▪ Storage

▪ E.g., GPT-3 ≈175B parameters

Prohibitive for end-user to support Inference
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[1] https://www.precedenceresearch.com/artificial-intelligence-market

[1]
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MLaaS for DL Inference

▪ Cloud “as a solution” to the resource wall challenge of DL inference

Inference takes 90% of total infrastructure cost [1]

Serves tens-of trillions inference tasks a day [2]

▪ To further exploit the trend MLaaS was introduced

• End-user provide pre-trained model along with throughput-/latency- QoS
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[1] “Deliver high performance ML inference with AWS Inferentia.” https://d1.awsstatic.com/events/reinvent/2019/REPEAT 1 Deliver high performance ML inference with AWS 
Inferentia CMP324-R1.pdf. Accessed: 04-03-2023.
[2] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro, et al., “Applied machine learning at Facebook: A datacenter 
infrastructure perspective,” in 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 620–629, IEEE,2018.
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MLaaS Challenges
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MLaaS Challenges

Resource Interference

Diverse QoSs/SLOs

Model Variants

Guarantee the user-defined QoS/SLO requirements and maximize resource efficiency
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Inference Serving Testbed

▪ HW/SW Infrastructure
▪ 2 VMs serving as master and worker of a Kubernetes cluster

▪ Inference Engine Workloads
▪ Image classification + Object detection inference engines from MLPerf [1]

▪ Synthetic Interference
▪ Microbenchmarks that stress CPU, L2/L3 cache and memory bandwidth/capacity from iBench 

[2]
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VM vCPUs RAM 

Master 4 8 GB

Worker 8 16 GB

[1] V. J. Reddi et al., “MLPerf Inference Benchmark,” 2019
[2] C. Delimitrou and C. Kozyrakis, “ibench: Quantifying interference for datacenter applications,” in 2013 IEEE international symposium on workload characterization (IISWC), 
pp. 23–33, IEEE, 2013.
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Characterizing Inference Serving

▪ Quantify the impact of the following to inference engine performance 

▪ Different model representation backends i.e., TensorFlow, ONNX Runtime

▪ Vertical/Horizontal scaling

▪ Interference
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Isolated Execution
Q1: How do different model variants for the same task behave in terms of performance?
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TF-MobileNet 4.6x higher QPS than TF-ResNet50

No clear dominance of TensorFlow over ONNX Runtime and vice versa
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Isolated Execution

Q2: How does vertical scaling (i.e., #Threads) of resources affect performance?
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#Threads = 8 compared to #Threads = 1

2.8x higher QPS on average for ONNX Runtime

3.8x higher QPS on average for TensorFlow
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Isolated Execution

Q3: How does horizontal scaling (i.e., #Workers) of resources affect performance?

IRIS: Interference and Resource Aware Predictive Inference Serving on Cloud Infrastructures 9A. Ferikoglou

Im
ag

e 
C

la
ss

if
ic

at
io

n

TensorFlow not affected due to CPython’s GIL

ONNX Runtime presents a 14% QPS drop on average
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Execution under Interference
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Q4: How does resource interference affect the performance of the inference engines? 

#iBench = 16 on Object Detection

11.7x lower QPS on average stressing CPU

12.5x lower QPS on average stressing Memory BW



Dimosthenis Masouros

Execution under Interference
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Q5: Do different backends reveal different performance sensitivity w.r.t resource interference ?
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ONNX-ResNet50 1.5x higher QPS than TF-ResNet50

TF-SSDMobileNet 2.5x higher QPS than ONNX-SSDMobileNet
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Execution under Interference
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Q6: How do different resource allocations affect the performance of the inference 
engines under the presence of interference?

ONNX Runtime TensorFlow

#Threads = 2 or 4 #Threads > 5
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IRIS Design

▪ Based on our observations we design IRIS, an interference- and 
resource-aware predictive orchestration methodology

▪ Identifies interference effects by exploiting low-level performance events

▪ Provides accurate performance predictions

▪ Automatically applies horizontal/vertical scaling policies and chooses the 
appropriate model variant
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IRIS Design – Offline Phase

IRIS: Interference and Resource Aware Predictive Inference Serving on Cloud Infrastructures 14A. Ferikoglou

Random Scenario Execution
Training Dataset Formation, ML 

Model Selection and Tuning
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IRIS Design – Online Phase
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Server Metrics Collection
QPS Prediction & Parallelism 

Level Selection
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Evaluation

▪ We evaluate IRIS approach using:

• different interference scenarios of varying intensity

• different QoS constraints per inference engine (Low, Medium, and High)

▪ The model-less version of IRIS is compared with:
• All the interference-aware model-specific IRIS schedulers
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Evaluation – Model-less (Image Classification)

IRIS: Interference and Resource Aware Predictive Inference Serving on Cloud Infrastructures 17A. Ferikoglou

57.6% less QoS violations on average compared to 
model-specific schedulers

21.3% CPU utilization on average

2x, 1.2x, and 1.6x higher QPS for Low, Medium, and 
High QoS constraint on average



Dimosthenis Masouros

Evaluation – Model-less (Object Detection)
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34.2% CPU utilization on average

23.9% less QoS violations on average compared to 
model-specific schedulers

1.4x, 1.8x, and 1.5x higher QPS for Low, Medium, and 
High QoS constraint on average
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Conclusion

▪ We presented IRIS an interference- and resource-aware predictive
scheduling framework for ML inference serving

▪ Guarantees the application-specific QoS constraints while minimizing resource 
utilization

▪ The model-less feature achieves:
▪ 1.5x fewer violations on average compared to model-specific

▪ ≈30% less CPU utilization on average compared to model-specific
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Thank You ☺
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