

Towards the Integration of TAPRIO-based Scheduling with Centralized TSN Control

TENSOR 2023

Panagiotis Papadimitriou

University of Macedonia, Greece

In collaboration with:

George Papathanail, Lefteris Mamatas (University of Macedonia, Greece)

Introduction

- Diverse requirements:
 - Support for diverse operational requirements
 - High throughput
 - Delay guarantees
- Challenges:
 - Complex sender-receiver relationship
 - Wide range of traffic patterns
 - Extreme dynamicity
 - On-demand resource allocation for new user requests
 - Dynamic topology changes
 - Radically different business models

Time-Sensitive Networking (TSN)

- TSN is a set of IEEE 802 Ethernet sub-standards
 - Network and link layer techniques to achieve:
 - Bounded latency
 - Low delay variation (jitter)
 - Low loss
- Our focus on this study:
 - Scheduled Traffic (IEEE 802.1Qbv)
 - Guarantees worst case latency

Category	Standards
Time Synchronization Providing network wide precise synchronization of the clocks of all entities at Layer 2.	IEEE 802.1AS & IEEE 802.1AS-Rev (Network Timing & Synchronization)
Latency & Jitter Separating traffic into traffic classes and efficiently forwarding & queuing the frames in accordance to these traffic classes.	IEEE 802.1Qav (Credit Based Shaping) IEEE 802.1Qbv (Scheduled Traffic) IEEE 802.3br & IEEE 802.1Qbu (Frame Preemption) IEEE 802.1Qch (Cyclic Queuing) IEEE 802.1Qcr (Asynchronous Traffic Shaping)
Reliability & Redundancy Maintaining network wide integrity by ensuring path redundancy and ingress queue policing.	IEEE 802.1CB (Frame Replication & Elimination) IEEE 802.1Qca (Path Control & Reservation) IEEE 802.1Qci (Per-Stream Filtering)
Resource Management Providing dynamic discovery, configuration and monitoring of network in addition to resource allocation & registration.	IEEE 802.1Qat & IEEE 802.1Qcc (Stream Reservation) IEEE 802.1Qcp (YANG Models) IEEE 802.1CS (Link-Local Reservation)

IEEE 802.1Qbv

- IEEE 802.1Qbv introduces a transmission gate operation for each queue
- Transmission gates are controlled by a Gate Control List (GCL)

Centralized Network Controller (CNC)

- Fully centralized model of TSN control plane
 - CUC collects and conveys all flow requirements from talkers (IEEE 802.1Qdj)
 - CNC is responsible for TSN schedule generation based on a network-wide view

TSN for IoT-to-VO Communication

Objectives

- Various TSN aspects mandate TSN platforms for experimentation:
 - Interaction of TSN with network orchestrators
 - Translation of high-level flow requirements or intents into GCL
 - Synchronization among talker and TSN bridges
- Experimental environments under consideration:
 - TSN testbed
 - Mininet
- Main Goal:
 - Integration of TSN scheduler with centralized TSN control
 - TAPRIO
 - CNC

TSN Platform

TSN Platform

- TSN platform components:
 - TAPRIO-based TSN datapath
 - TSN control plane (CNC)
 - NETCONF for CNC-TSN interactions

Data Plane

- TAPRIO-based datapath:
 - Packet classification to a specific traffic class via the **priority** field of the socket buffer (**skb**)
- Traffic class-to-queue mapping:
 - DSCP field of the packet header using IPv6
- TAPRIO activation:
 - Linux tc qdisc
 - Modification of skb priority field through iptables

Data Plane

- Workflow:
 - Incoming packet marked with DSCP value 0x40 reach the ingress interface
 - First classification using IPTables
 - set the skb priority field (0x40)
 - TAPRIO qdisc maps the incoming packet to queues

Chain POSTROUTING (policy ACCEPT)						
Target	Prot	Source	Destination	Match	Action	
CLASSIFY	All	Anyware	Anyware	DSCP match 0xXX	CLASSIFY set 0:Y	

Control Plane

- CNC:
 - computes TSN 802.1Qbv schedules
 - communicates with TAPRIO via the NETCONF plugin
 - YANG-TSN model
- YANG parser:
 - parses YANG-TSN models to a set of actions that can be applied directly to the queuing disc layer of the Linux kernel

Experimental Evaluation

Experimental Setup

Impact of Diverse TAPRIO Schedules on Latency/Jitter

- High-priority and best-effort traffic with 1440-byte packets at 2000 packets/sec using iperf
 - High-priority traffic matched on DSCP field 0x40
 - Best-effort traffic matched on DSCP field 0x00
- Tests with diverse schedules on a cycle time of 1 ms

Impact of TAPRIO 800:200

- High priority and best-effort traffic with 1440-byte packets at 2000 packets/sec using lperf
 - High-priority traffic matched on DSCP field 0x40
 - Best-effort traffic matched on DSCP field 0x00
- Tests with TAPRIO 800:200 a cycle time of 1 ms

- Interaction between CNC and TAPRIO
 - Communication overhead for TSN schedule population into TAPRIO
- Experiments with a Talker-Listener pair and 1-10 TSN bridges

- Main steps for CNC-TAPRIO interaction
 - TSN schedule configuration

- Main steps for CNC-TAPRIO interaction
 - TSN schedule configuration
 - Communication via NETCONF

- Main steps for CNC-TAPRIO interaction
 - TSN schedule configuration
 - Communication via NETCONF
 - YANG-TSN parsing

- Control communication delay is dominated by TSN schedule generation within CNC
 - Total delay is low and scales well with the number of TSN switches

Conclusions

Conclusions

- TSN platform for experimentation with TSN mechanisms
 - TAPRIO-based bridge for prioritization of scheduled traffic
 - CNC for TSN schedule generation
- Initial performance/feasibility tests
 - Prioritized traffic experiences reduced latency and jitter
 - Low control communication overhead during the interaction of CNC with TAPRIO
- Future work:
 - Interoperability of TSN with orchestration platforms (e.g., NEPHELE) for the deployment of hyper-distributed applications
 - Translation of high-level network requirements/intents into low-level GCL configurations

Thank you!

Panagiotis Papadimitriou

E-mail: papadimitriou@uom.edu.gr WWW: http://netcloud.uom.gr/