Towards the Integration of TAPRIO-based Scheduling with Centralized TSN Control

TENSOR 2023

Panagiotis Papadimitriou
University of Macedonia, Greece

In collaboration with:
George Papathanail, Lefteris Mamatas (University of Macedonia, Greece)
Introduction

- **Diverse requirements:**
 - Support for diverse operational requirements
 - High throughput
 - Delay guarantees

- **Challenges:**
 - Complex sender-receiver relationship
 - Wide range of traffic patterns
 - Extreme dynamicity
 - On-demand resource allocation for new user requests
 - Dynamic topology changes
 - Radically different business models
Time-Sensitive Networking (TSN)

- TSN is a set of IEEE 802 Ethernet sub-standards
 - Network and link layer techniques to achieve:
 - Bounded latency
 - Low delay variation (jitter)
 - Low loss
- Our focus on this study:
 - Scheduled Traffic (IEEE 802.1Qbv)
 - Guarantees worst case latency
IEEE 802.1Qbv

- IEEE 802.1Qbv introduces a transmission gate operation for each queue
- Transmission gates are controlled by a Gate Control List (GCL)
Centralized Network Controller (CNC)

- Fully centralized model of TSN control plane
 - CUC collects and conveys all flow requirements from talkers (IEEE 802.1Qdj)
 - CNC is responsible for TSN schedule generation based on a network-wide view
TSN for IoT-to-VO Communication
Various TSN aspects mandate TSN platforms for experimentation:
 – Interaction of TSN with network orchestrators
 • Translation of high-level flow requirements or intents into GCL
 – Synchronization among talker and TSN bridges

Experimental environments under consideration:
 – TSN testbed
 – Mininet

Main Goal:
 – Integration of TSN scheduler with centralized TSN control
 • TAPRIO
 • CNC
TSN Platform
• TSN platform components:
 – TAPRIO-based TSN datapath
 – TSN control plane (CNC)
 – NETCONF for CNC-TSN interactions
Data Plane

• TAPRIO-based datapath:
 – Packet classification to a specific traffic class via the **priority** field of the socket buffer (**skb**)

• Traffic class-to-queue mapping:
 – **DSCP** field of the packet header using IPv6

• TAPRIO activation:
 – Linux **tc qdisc**
 – Modification of **skb** priority field through **iptables**
Data Plane

• Workflow:
 – Incoming packet marked with DSCP value 0x40 reach the ingress interface
 – First classification using IPTables
 • set the skb priority field (0x40)
 – TAPRIO qdisc maps the incoming packet to queues

<table>
<thead>
<tr>
<th>Chain POSTROUTING (policy ACCEPT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target</td>
</tr>
<tr>
<td>CLASSIFY</td>
</tr>
</tbody>
</table>
Control Plane

- CNC:
 - computes TSN 802.1Qbv schedules
 - communicates with TAPRIO via the NETCONF plugin
 - YANG-TSN model

- YANG parser:
 - parses YANG-TSN models to a set of actions that can be applied directly to the queuing disc layer of the Linux kernel
Experimental Evaluation
Experimental Setup

- TAPRIO activated on the egress port of the IoT Gateway.

- Extended version of Mininet on Ubuntu 20.04.1 LTS:
 - Support for up to 8 TX/RX queues
 - IPMininet for IPv6 addressing

- Tests conducted on a VM with 8 vCPUs and 8GB RAM
Impact of Diverse TAPRIO Schedules on Latency/Jitter

- **High-priority** and **best-effort** traffic with 1440-byte packets at 2000 packets/sec using iperf
 - High-priority traffic matched on DSCP field 0x40
 - Best-effort traffic matched on DSCP field 0x00
- Tests with diverse schedules on a cycle time of 1 ms
Impact of TAPRIO 800:200

- High priority and best-effort traffic with 1440-byte packets at 2000 packets/sec using Iperf
 - High-priority traffic matched on DSCP field 0x40
 - Best-effort traffic matched on DSCP field 0x00
- Tests with TAPRIO 800:200 a cycle time of 1 ms
Control Communication Overhead

- Interaction between CNC and TAPRIO
 - Communication overhead for TSN schedule population into TAPRIO

- Experiments with a Talker-Listener pair and 1-10 TSN bridges
Control Communication Overhead

- Main steps for CNC-TAPRIO interaction
 - TSN schedule configuration
Control Communication Overhead

- Main steps for CNC-TAPRIO interaction
 - TSN schedule configuration
 - Communication via NETCONF
Control Communication Overhead

- Main steps for CNC-TAPRIO interaction
 - TSN schedule configuration
 - Communication via NETCONF
 - YANG-TSN parsing
Control Communication Overhead

- Control communication delay is dominated by TSN schedule generation within CNC
 - Total delay is low and scales well with the number of TSN switches
Conclusions
Conclusions

• TSN platform for experimentation with TSN mechanisms
 – TAPRIO-based bridge for prioritization of scheduled traffic
 – CNC for TSN schedule generation

• Initial performance/feasibility tests
 – Prioritized traffic experiences reduced latency and jitter
 – Low control communication overhead during the interaction of CNC with TAPRIO

• Future work:
 – Interoperability of TSN with orchestration platforms (e.g., NEPHELE) for the deployment of hyper-distributed applications
 • Translation of high-level network requirements/intents into low-level GCL configurations
Thank you!

Panagiotis Papadimitriou

E-mail: papadimitriou@uom.edu.gr
WWW: http://netcloud.uom.gr/